·

Mathematical analysis notes

Published at 2024-07-11 21:02:58Viewed 495 times
Academic article
·
Note
Please reprint with source link

1. Mean value theorems

Theorem 1.1. ($\color{red}{\textrm{Rolle's Theorem}}$) Let $f$ be a function that satisfies the following conditions:

  1. $f$ is ${\color{Cyan}{\textrm{continuous}}}$ on the ${\color{orange}{\textrm{closed}}}$ interval $[a,b]$.
  2. $f$ is ${\color{Cyan}{\textrm{differentiable}}}$ on the ${\color{orange}{\textrm{open}}}$ interval $(a,b)$.
  3. $f(a) = f(b)$

Then there exists $\zeta\in(a,b)$ such that $f'(\zeta) = 0$.

Theorem 1.2. ($\color{red}{\textrm{The Mean Value Theorem}}$) Let $f$ be a function that satisfies the following conditions:

  1. $f$ is ${\color{Cyan}{\textrm{continuous}}}$ on the ${\color{orange}{\textrm{closed}}}$ interval $[a,b]$.
  2. $f$ is ${\color{Cyan}{\textrm{differentiable}}}$ on the ${\color{orange}{\textrm{open}}}$ interval $(a,b)$.

Then there exists $\xi\in[a,b]$ such that $$ f'(\xi) = \frac{f(b)-f(a)}{b-a} $$ or, equivalently, $$ f(b)-f(a)=f'(\xi)(b-a) $$

Theorem 1.3. ($\color{red}{\textrm{Cauchy's Mean Value Theorem}}$) Suppose that the functions $f$ and $g$ are ${\color{Cyan}{\textrm{continuous}}}$ on $[a,b]$ and ${\color{Cyan}{\textrm{differentiable}}}$ on $(a,b)$, then there exists $\varsigma\in (a,b)$ such that $$ (f(b)-f(a))g'(\varsigma) = (g(b)-g(a))f'(\varsigma) $$

If, in addition, $g(a)\neq g(b)$ and $g'(\varsigma)\neq 0$, this is equivalent to: $$\frac{f'(\varsigma)}{g'(\varsigma)} = \frac{f(b)-f(a)}{g(b)-g(a)}.$$

Theorem 1.4. ($\color{red}{\textrm{Mean Value Theorem For Integrals}}$) If $f$ is continuous on $[a,b]$, then there ${\color{blue}{\textrm{exists}}}$ a number $\varepsilon$ in $[a,b]$ such that $$ \int_{a}^{b}f(x)dx = f(\varepsilon)(b-a)$$

Definition 1.5. The ${\color{DeepPink}{\textrm{mean of a function}}}$ over the interval $[a,b]$ is $$ f(\xi)=\frac{1}{b-a}\int_{a}^{b}f(x)dx $$

Theorem 1.6. ($\color{red}{\textrm{The Fundamental Theorem Of Calculus}}$) If $f$ is ${\color{Cyan}{\textrm{continuous}}}$ on $[a,b]$, then the function $$ \Phi(x)=\int_{a}^{x}f(t)dt $$ is ${\color{Cyan}{\textrm{differentiable}}}$ on $[a,b]$ and its ${\color{orange}{\textrm{derivative}}}$ is $$ \Phi'(x)= \frac{d}{dx}\int_{a}^{x}f(t)dt = f(x) \  \ (a\leq x\leq b).$$

2. The maximum and minimum of a function

Definition 2.1. Let $f$ be a function, and $\zeta$ a number in its domain. Then the number $f(\zeta)$ is a

  1. ${\color{red}{\textrm{local maximum}}}$ value of $f$ if $f(\zeta)\geq f(x)$ where $x$ is in a ${\color{orange}{\textrm{neighborhood}}}$ of $\zeta$.
  2. ${\color{red}{\textrm{local minimum}}}$ value of $f$ if $f(\zeta)\leq f(x)$ where $x$ is in a ${\color{orange}{\textrm{neighborhood}}}$ of $\zeta$.

Definition 2.2. Let $f$ be a function, and $\zeta$ a number in its domain $\mathds{D}$. Then the number $f(\zeta)$ is a

  1. ${\color{red}{\textrm{absolute or global maximum}}}$ value of $f$ if $f(\zeta)\geq f(x)$ for all $x\in\mathds{D}$.
  2. ${\color{red}{\textrm{absolute or global minimum}}}$ value of $f$ if $f(\zeta)\leq f(x)$ for all $x\in\mathds{D}$.

Definition 2.3. The ${\color{magenta}{\textrm{maximum and minimum values}}}$ of $f$ are called ${\color{magenta}{\textrm{extreme values}}}$ of $f$.

Remark 2.4. A ${\color{blue}{\textrm{Stationary point}}}$ of $f$ is a point $\zeta$ where $f'(\zeta) = 0$. A ${\color{blue}{\textrm{critical point}}}$ of $f$ is a point $\delta$ such that $f'(\delta) = 0$ or $f'(\delta)$ does not exist. The value of the function at a critical point is called ${\color{blue}{\textrm{critical value}}}$.

Theorem 2.5. ($\color{magenta}{\textrm{Fermat's Theorem}}$) If $f$ has a ${\color{orange}{\textrm{local maximum}}}$ or a ${\color{orange}{\textrm{local minimum}}}$ at $\xi$ and if $f'(\xi)$ exists, then $f'(\xi) = 0$.

Proposition 2.6. ($\color{magenta}{\textrm{The First Derivative Test}}$) Suppose that $\xi$ is a ${\color{Cyan}{\textrm{critical point}}}$ of a ${\color{blue}{\textrm{continuous}}}$ function $f$.

  1. If $f'$ changes from positive to negative at $\xi$, then $f$ has a ${\color{red}{\textrm{local maximum}}}$ at $\xi$.
  2. If $f'$ changes from negative to positive at $\xi$, then $f$ has a ${\color{red}{\textrm{local minimum}}}$ at $\xi$.
  3. If $f'$ does not change sign at $\xi$ (for example, if $f'$ is positive on both sides of $\xi$ or negative on both sides), then $f$ has ${\color{red}{\textrm{no local maximum or minimum}}}$ at $\xi$.

Proposition 2.7. ($\color{magenta}{\textrm{The Second Derivative Test}}$) Suppose $f''$ is ${\color{blue}{\textrm{continuous}}}$ near $\xi$.

  1. If $f'(\xi) = 0$ and $f''(\xi)>0$, then $f$ has a ${\color{Cyan}{\textrm{local minimum}}}$ at $\xi$.
  2. If $f'(\xi) = 0$ and $f''(\xi)<0$, then $f$ has a ${\color{Cyan}{\textrm{local maximum}}}$ at $\xi$.

Definition 2.8. An ${\color{magenta}{\textrm{inflection point}}}$, ${\color{magenta}{\textrm{point of inflection}}}$, or ${\color{magenta}{\textrm{inflexion}}}$ of $f$ is a point $\xi$ such that $f''(\xi)=0$ and $f''$ ${\color{Cyan}{\textrm{changes sign}}}$ at $\xi$.

3. Asymptotes

Definition 3.1. If $\lim\limits_{x\to{+\infty}}f(x)=L$ or $\lim\limits_{x\to{-\infty}}f(x)=L$, we say the line $y = L$ is a ${\color{RoyalBlue}{\textbf{horizontal asymptote}}}$ of $f$. If $\lim\limits_{x\to{L}}f(x)=\infty$ (or $\lim\limits_{x\to{L^{+}}}f(x)=\infty$, $\lim\limits_{x\to{L^{-}}}f(x)=\infty$), we say the line $x = L$ is a ${\color{Salmon}{\textbf{vertical asymptote}}}$.

$\require{empheq}\begin{empheq}{align*} &\lim\limits_{x\to{+\infty}}[f(x)-(kx+b)]=0 \Leftrightarrow \lim\limits_{x\to{+\infty}}[f(x)-kx]=b.   \\ &\lim\limits_{x\to{+\infty}}[\frac{f(x)}{x}-k]=\lim\limits_{x\to{+\infty}}\frac{1}{x}[f(x)-kx]=0\cdot b=0 \Rightarrow \lim\limits_{x\to{+\infty}}\frac{f(x)}{x}=k \end{empheq}$

Then the line $y=kx+b$ is an ${\color{olive}{\textrm{oblique asymptote}}}$ or an ${\color{Sepia}{\textrm{slant asymptote}}}$ of $f$.

4. Functions in several variables

Theorem 4.1. $\color{magenta}{\textrm{The Chain Rule (Case 1).}}$ Suppose that ${\color{red}{z = f(x,y)}}$ is a ${\color{Cyan}{\textrm{differentiable function}}}$ of $x$ and $y$, where ${\color{red}{x=g(t)}}$ and ${\color{red}{y=h(t)}}$ are both ${\color{Cyan}{\textrm{differentiable functions}}}$ of $t$. Then $z$ is a ${\color{Cyan}{\textrm{differentiable function}}}$ of $t$ and

$\begin{align*}\fbox{ $\displaystyle \frac{dz}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$ } \end{align*}$

Definition 4.2. The ${\color{red}{\textbf{total differential}}}$ $dz$ is defined by

$$\displaystyle dz = f_{x}(x,y)dx+f_{y}(x,y)dy=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial x}dy $$

Theorem 4.3. If $F(x,y)$ is defined on a disk $\mathds{D}$ containing $(a,b)$, where $F(a,b) = 0$, $F_{y}(a,b)\neq 0$, and $F_{x}$ and $F_{y}$ are continuous on $\mathds{D}$, then the equation $F(x,y) = 0$ defines a function $y=f(x)$ near $(a,b)$ such that

$\begin{align*}\displaystyle \frac{dy}{dx}=-\frac{\partial F}{\partial x}\bigg/\frac{\partial F}{\partial y}=-\frac{F_{x}}{F_{y}} \end{align*}$

5. Equivalent infinitesimal

$\begin{align*} \sin x&\sim x   \\ \tan x&\sim x  \\ \arctan x&\sim x \\ \arcsin x&\sim x \\ 1-\cos x&\sim \frac{1}{2}x^{2} \\ \ln(1+x)&\sim x \\ e^{x}-1&\sim x \\ \sqrt[n]{(1+x)}-1&\sim \frac{1}{n}x \end{align*}$

6. Integral formulae

$\begin{align} &\iint\limits_{D}f(x,y)d\sigma = \int_{a}^{b}dx\int_{\varphi_{1}(x)}^{\varphi_{2}(x)}f(x,y)dy=\int_{a}^{b}[\int_{\varphi_{1}(x)}^{\varphi_{2}(x)}f(x,y)dy]dx \\ &\iint\limits_{D}f(x,y)d\sigma = \int_{c}^{d}dy\int_{\psi_{1}(x)}^{\psi_{2}(x)}f(x,y)dx=\int_{c}^{d}[\int_{\psi_{1}(x)}^{\psi_{2}(x)}f(x,y)dx]dy \\ &\iint\limits_{D}f(x,y)dxdy=\iint\limits_{D}f(\rho\cos\theta, \rho\sin\theta)\rho d\rho d\theta \\ &\iint\limits_{D}f(\rho\cos\theta, \rho\sin\theta)\rho d\rho d\theta = \int_{\alpha}^{\beta}d\theta\int_{0}^{\varphi(\theta)}f(\rho\cos\theta, \rho\sin\theta)\rho d\rho \\ &\iint\limits_{D}f(\rho\cos\theta, \rho\sin\theta)\rho d\rho d\theta = \int_{0}^{2\pi}d\theta\int_{0}^{\varphi(\theta)}f(\rho\cos\theta, \rho\sin\theta)\rho d\rho \end{align}$

7. Analytic geometry in three dimensions

Definition 7.1. A surface in $\mathbb{R}^{3}$ is called ${\color{green}{\textbf{a surface of revolution}}}$ if it is generated by rotating a curve around an ${\color{red}{\textrm{axis of rotation}}}$.

Let $C$ be a curve in ${\color{magenta}{YOZ\textrm{-plane}}}$ defined by the equation $f(y,z)=0$. If we rotate $C$ around

  1. the ${\color{magenta}{z\textrm{-axis}}}$, then we have $f(\pm\sqrt{x^{2}+y^{2}},z)=0$.
  2. the ${\color{magenta}{y\textrm{-axis}}}$, then we have $f(y,\pm\sqrt{x^{2}+z^{2}})=0$.

Example 7.2.  Some examples of ${\color{red}{\textit{quadratic surfaces}}}$ :

  1. ${\color{Cyan}{\textbf{Elliptic cone}}} : \displaystyle{\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = z^{2}}$.
  2. ${\color{green}{\textbf{Ellipsoid}}} : \displaystyle{\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 1} $.
  3. ${\color{magenta}{\textbf{One-sheet hyperboloid}}}$ or ${\color{orange}{\textbf{hyperbolic hyperboloid}}} : \displaystyle{\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} - \frac{z^{2}}{c^{2}} = 1}$.
  4. ${\color{blue}{\textbf{Two-sheet hyperboloid}}}$ or ${\color{Goldenrod}{\textbf{elliptic hyperboloid}}} : \displaystyle{\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} - \frac{z^{2}}{c^{2}} = 1}$.

8. $\Gamma$ Functions

Definition 8.1. A ${\color{RoyalBlue}{\textbf{$\Gamma$ function}}}$ is a function of the form $$ \Gamma(s) = \int_{0}^{+\infty}e^{-x}x^{s-1}dx  \ (s>0).$$

The $\Gamma$ function has some important properties :

  1. $\Gamma(s+1)=s\Gamma(s)$ $(s>0)$.
  2. when $s\to0^{+}$, $\Gamma(s)\to +\infty$.
  3. $\Gamma(s)\Gamma(1-s)$ = $\displaystyle\frac{\pi}{\sin\pi s}$ $(0<s<1)$.
  4. In $\Gamma(s) = \int_{0}^{+\infty}e^{-x}x^{s-1}dx$, if replace $x$ by $u^{2}$, we have $$ \Gamma(s) = 2\int_{0}^{+\infty}e^{-u^{2}}u^{2s-1}du $$ and let $2s-1=t$ or $\displaystyle s=\frac{1+t}{2}$, we have $$ \int_{0}^{+\infty}e^{-u^{2}}u^{t}du = \frac{1}{2}\Gamma(\frac{1+t}{2}) \ (t>-1). $$

9. Applications of definite integration

The following are three cases to solve the ${\color{green}{\textrm{arc length}}}$ of a given curve :

  1. Let $C$ be a ${\color{Cyan}{\textrm{parametric curve}}}$ defined by $$ \begin{cases} x=\varphi(t), \ \ (\alpha\leq\beta)\\ y=\psi(t) . \end{cases} $$ Then the ${\color{purple}{\textbf{arc length}}}$ of $C$ is $\displaystyle s=\int_{\alpha}^{\beta}\sqrt{\varphi'^{2}(t)+\psi'^{2}(t)}dt$.
  2. If the curve $C$ is defined by the equation $y=f(x)$, $(a\leq x\leq b)$. Then its ${\color{Sepia}{\textbf{arc length}}}$ is $\displaystyle s = \int_{a}^{b}\sqrt{1+y'^{2}}dx$.
  3. If the curve $C$ is defined by the polar equation $\rho=\rho(\theta)$, $(\alpha\leq\beta)$. Then its ${\color{RoyalBlue}{\textbf{arc length}}}$ is $\displaystyle s=\int_{\alpha}^{\beta}\sqrt{\rho^{2}(\theta)+\rho'^{2}(\theta)}d\theta.$

0 人喜欢

Comments

There is no comment, let's add the first one.

弦圈热门内容

如何激怒一位数学爱好者?

知乎提问:如何激怒一位数学爱好者?我的回答:我初三乃至高中想要自学高等数学的时候,像“学数学有什么用?”、“纯数学有什么实际应用吗?”、“你一个做数学的连这么简单的计算都不会?”这些话及其变式,确实有可能让我非常不爽。到了高三乃至本科这个阶段,像“名词党”、“你知道什么相关的例子吗?”、“你需要知道更多具体的数学”、“你问的问题太trivial”、“你看这个内容需要要看这么久?”、“你不是做数学的”等等这些话及其变式,都会让我觉得非常不爽。当然这是之前会感到不爽,直到我开始独立做研究、写论文,真正开始做数学后,才发现这些话要么都是单纯的p话、要么是正确的废话,总是如今是完全不在意。说这些话的人,本身水平如何也要画个大大的问号,有些人连学术产出都没有就喜欢到处指点江山、误人子弟。这时到了做数学阶段,记忆中曾经让我不爽的话,包括“你的论文好像notes啊”,然后就是投稿时审稿人的冷淡回应,如“你的论文不适合本期刊”、“你的论文in general non sense”。直到后来我的论文也得到某些人认可后,我也明白在纯数学什么东西是对的、什么理论是重要的有时候是一件非常主观的事情。最近能让我 ...

世界婴儿危机,我们要被婴儿淹没了吗?(故事线)

我打算补全一下之前写的 世界婴儿危机,我们要被婴儿淹没了吗?的故事线,这个故事的灵感源于一次在微信上跟朋友聊天,我突发奇想下说出来的。当时记得是在讨论泡菜国的一则新闻,水里检测出伟哥的成分超标😅。然后我直接展开想象,原本我很想把故事像小说那样一章一章的全写出来,但奈何我的文笔真的有限,我语文一向不太好,每写一点就像挤牙膏一样特别难受。不过这么有趣的故事就这么荒废在那了,我觉得很是心疼,即便自己文采不行,不能把细节刻画好,还是把故事线理一理吧。第一章 危机开始泡菜国H市,有一条河名为“生命之河”,它原本清澈见底,但如今因为泛滥的伟哥成分,而变得“浑浊”,晚上河面上散发着“诡异”的光芒。这本是一个平常的晚上,但是泡菜国的年轻人像打了鸡血一样,免疫了伟哥的副作用开始以一天七次的频率疯狂造娃。由于每次都一发入魂,泡菜国的新生人口直接开始暴增,出生率轻松超过了人类历史最高记录。很快这也引起了政府的注意,然而政府不仅对此十分冷淡,直接打算坐视不管,他们认为这次婴儿潮危机会很快过去,泡菜国总统还忙着处理他的弹劾案件呢。泡菜国也因为这次史无前例的婴儿潮事件,沦为全世界的笑柄,其他国家的人纷纷落井下石, ...

在下22岁打算毕生献身于攻克黎曼猜想,可以给我一句忠告吗?

知乎提问:在下22岁打算毕生献身于攻克黎曼猜想,可以给我一句忠告吗?我的回答:在我看来数学研究者执着于攻克某个猜想、某个问题,除了名利外,毫无意义。比起关注某个著名的open question,还不如多些关注数学本身,解决问题也罢、构建理论也罢,所有这一切不过是为了数学的发展罢了。即便你对黎曼猜想真的很感兴趣,也没必要毕生都花费在这上面,得在合适的时机干合适的事情。怀尔斯很小的时候就被费马大定理所吸引,但他最后也是在代数几何领域有了突破性进展后,觉得是时候了才选择攻克费马大定理。有句话叫“站在巨人的肩膀上”,个人是渺小的,很多时候你总是夸大了个人的作用。想要攻克黎曼猜想这种级别的问题,需要好多代数学家们的努力。因此,与其执着于这个虚无缥缈的猜想,还不如着眼于当下,先解决当下的数学问题,发展当下的数学理论。只有这个做好了,你才有资格挑战黎曼猜想。

AI写小说:陈默重生(版本一+版本二)

这篇短文出于今年6月份,故事线是自己写的,内容是AI输出的,可以发现质量并不怎么好,AI总是get不到我的点,老是差么点,达不到我的要求和期望。经过几个月的改进,现在的AI应该好些了吧。版本一陈默坐在高三的课堂上,心中却是翻涌着前世的记忆。他曾是鸿蒙神,统领亿万星域,仅差半步就能踏入传说中的灭神境。然而,在突破的关键时刻,他意外陨落,重生回到了这个看似平凡的高三时期。这个世界与他前世的修仙界截然不同,这是一个属于职业者的世界。人们通过转职仪式来觉醒自己的职业天赋,从而决定未来的道路。陈默深知,他即将面临的转职仪式,对他来说不仅是一次重新选择的机会,更可能是他重拾前世力量,再次踏上巅峰的起点。随着校长慷慨激昂的演讲落幕,转职仪式正式开始。同学们怀着紧张与期待的心情,一个个走上转职阵法,去迎接他们命运的转折。然而,对于大多数人来说,转职结果都是普通的职业,虽然让他们有些失望,但也只能接受现实。终于轮到了陈默。他站起身,深吸一口气,稳步走向转职阵法。当他将手放在觉醒石上的那一刻,他感受到了一股前所未有的能量波动。紧接着,天地间突发异象,黑云笼罩了方圆数十万公里,仿佛要将整个世界都吞噬进去。老 ...

Serge Lang经典代数教材:Algebra Revised Third Edition

这是GTM211,Serge Lang写的代数经典教材Algebra。关于Serge Lang的教材,虽然在知乎上褒贬不一,但我自己以前在数学圈中,倒是没听过这些负面评价,倒是听说过有人推荐Serge Lang的这本Algebra,遇到代数方面不懂的可以直接查Algebra。我自己基本没读过Serge Lang的教材,这本Algebra除了,记得当初也是看了一些的。这本书作为入门教材,因为篇幅过长,对于不懂得跳着读书的人来说要耗费很多时间,因此不适合。但是翻看目录就可以发现,这本书应该是迄今为止代数方面最完备的教材之一了,前面我分享的GTM242 Grillet抽象代数经典教材:Abstract Algebra 2nd,也是非常完备的代数教材,跟Serge Lang的这本Algebra结合起来正好,因此我之前查抽象代数方面的知识,就是拿GTM242和GTM211这两本作为参考文献,当然还有Stack Project。然后在知乎上我发现(这也是我为啥讨厌知乎)有人会说某教材不好,原因是肤浅或者说书中有不少小错。我觉得还是少拿这种言论来误人子弟,真的知乎什么人都能随便评价数学😅。在我看来, ...

弦圈APP先开发到这里......

这段时间心血来潮,打算开发一下弦圈的手机端APP,这样网站和APP都齐全了。就像数学那种完美无缺的感觉一样,我一直都把弦圈当作做数学那样去做它。之前我在评论区也说过,一直以来都是我自己一个人搞,个人精力有限,因此很多事情进展会比较缓慢。这个APP也是真的难写,手机的环境和网站完全不同,我原先写的代码肯定也是用不上的了,因此也是重新写一套APP的代码。图五为弦圈APP的部分代码,用的是React native写的。我之前写弦圈用的是Vue+Nuxt写的,从零开始自学写的花了六个月时间。现在写这个APP估计也至少需要一个月的时间。写这代码比我当初敲LaTeX写论文还累,这种累主要是身体体力上的累(写代码真的是苦力活),而写论文更多是脑子比较累,因为烧脑,但是我更擅长应对脑力疲劳。毕竟十几岁开始高强度学数学,烧脑对我来说习以为常,真的没什么。除了写代码,我还得运营。这段时间一直专心写代码也没怎么运营网站和社媒了,现在得先放一放APP开发了,不然网站的人气都散了😅。

弦圈在各大搜索引擎处于隐身状态,基本搜不到

小众网站弦圈,在各大搜索引擎基本上就是处于隐身状态,可以看看我分享的几张图片。其中图四、图五为谷歌搜索的后台数据,可以看到弦圈在谷歌也基本上是消失了,那个绿色的收录逐渐清零。因此,弦圈搜是搜不到的,之前有粉丝问我找不到网站,怎么搜不到,这就是原因[哭惹R]。如今这个时代,像这种小众小平台,在搜索引擎基本上不会有任何曝光,就相当于不存在。弦圈的网址不会变:manitori.xyz,因此不用担心找不到网站,有任何变化我都会在社媒账号上说明。既然搜索引擎不给我流量,我计划以后也会ban掉所有的搜索引擎,因为现在大家训练AI都在爬别人的数据,网站暴露在搜索引擎其实也相当于给别人免费提供数据。我也不希望用户辛苦写的东西变成烂大街的东西。最后感谢大家的支持以及你们对弦圈的认可,虽然如今弦圈仍有这样那样的问题,但我相信在大家的共同努力下,弦圈会变得更好[派对R]!

频率派和贝叶斯派到底在争论什么?

看了几本教材上对概率的定义,发现都一样啊,难道用相同的定义可以建立不同的概率理论吗?

计划开发弦圈的桌面端版和APP版

由于如今是后移动互联网时代,很多人在碎片化时间基本上都是用手机,手机用户群体庞大。加上弦圈本身也有不少手机端的访客,占比有时略高于电脑端,有时略低于。而弦圈目前只兼容了移动端浏览器,并没有一个真正给手机用的APP。因此,补上弦圈APP能在一定程度上弥补手机端体验的缺失。而桌面端,只是顺带的事情。其实我一直以来都计划开发弦圈桌面端+APP,只不过原计划是在网站运营好了以后再做打算,之前在小红书也有人说想我弄个APP,我当时就说人手不够弄不了。为什么现在突然决定弄呢?其实是因为我感兴趣😂,并且这段时间也闲来无事,网站运营先放一放了,前面高强度宣传引流+更新内容,属实吃不消,而且效果也不太满意。其实当时开发弦圈网站,确实只是为了应付毕设,不过后来我逐渐对网站开发感兴趣,因此就把它做得更好了。网站的名字刚开始也不叫弦圈,而是叫诗词工作室,后来又改成兵水行,总之名字记得改过好几次。网址刚开始是poemstudio.fun,后来还买了chordspace.cn,现在才改成这个。其实刚开始我是打算做APP的(做安卓APP),不过后来忘记是啥原因了,还是觉得做网站比较合适。现在为啥又说对写APP感兴趣 ...

学基础数学可以相信“勤能补拙”吗?

知乎提问:题主是某985数学系大二,学基础方向,做基础的研究是存在很长时间的追求,很有兴趣。但是大学前期贪玩,在学业上花费时间比较少,除了上课和写作业就基本没花时间在数学上了。所以虽然专业课成绩还好看,但考试成绩没法说明学习水平,我自己明显感觉知识储备非常匮乏。在知乎上看同样学基础的同学们,大一大二甚至高中就学了这样那样的课程,而我大二快毕业了甚至还没系统修过抽象代数,前两年只是在按学校安排的课程按部就班地学。现在想专心学习不要荒废学业,突然就比较焦虑。我高中时没有条件搞竞赛训练,自学考过两次高联,高一40分,高二连市上的预赛都没过。考大学生数学竞赛(专业a)也只能拿30分,数分计算经常算不明白,高代学完很少用,现在基本上忘完。拓扑实变这种课,正常难度的课后习题不看答案自己做得至少三十分钟才能搞定一道,一两个小时是常态,更多的还是不会做。花时间少是一方面,但也感觉自己不是有天赋的人。但我偏偏又走到了今天这条路上。现在很迷茫,当初高考选数学专业是因为一脑子热血,想着人这辈子就应该要向着自己的热爱而奋斗。但现在离本科毕业越来越近,我不得不思考未来的出路。我不知道我这样资质平平的人学基础数学 ...

弦圈更新日志之提问新功能:标记疑惑、提出子问题

今天我熬夜肝出了提问的新功能,分别是标记疑惑和提出子问题。示例可见测试问题:center h1 in the middle of screen和Vertically aligning CSS :before and :after content。我就长话短说简单介绍一下。所谓的子问题,意思是你可以根据原有的一个问题,提出一个更加具体、更加细致的子问题。因为有时候一些问题和回答往往比较宽泛,不是很具体,这时子问题就发挥作用了!而标记疑惑则是你可以标记回答中某个不懂的地方。你可以通过选定回答中的某个语句,然后向答主提出你的疑惑点,答主看到后可以回复你的疑惑。目前标记疑惑还有进一步优化的空间,并且之后计划应用在文章和书上,不仅仅是回答。对了,我还顺带美化了一下提问页面的布局和样式,让它看起来更加舒服顺眼一些。晚安😇

喜欢数学但是不擅长数学竞赛怎么办?非数学竞赛生如何在数学专业生存?

知乎提问:初中根本没有学习,中考以极差的分数去了某末流重点高中(中考分数还没jumping高),高中连数学竞赛名额都没有,高三自学过物理竞赛,因为实验和学习时间短没拿省一,高中基本上没有学过数学竞赛,高考620+考上某985数院,发现周围数学竞赛生非常多,说的东西我根本没有听过,大学数学能学会,别人甚至做了竞赛数论几千道题,我甚至一点都不懂。我的回答:我就从未参加过任何所谓的数学竞赛,我自己也对应试和竞赛本身深恶痛绝,反正是一丁点提不起兴趣。我本身也不是那种应试能力强的人,但这也没影响我的数学水平、科研能力。在纯粹的数学面前,所有学生无论擅长竞赛与非,都一视同仁。会就是会,不会就是不会,有些人参加竞赛比你学得好,可能是别人天赋比较就好,或者就是别人学得比你多,付出的努力比你多,那凭啥不能比你懂。所以答案也显而易见了,题主的这种情况,只能勤能补拙。天赋不如别人好,或者自己比别人学得少、学得慢,但是还是好想学数学,怎么办?其实这都是初学者常常遇见的问题。在我看来,最好的办法就是要学会调整自己的心态,明悟心性,把注意力放回到自己身上,放回到数学本身身上,不要老跟别人比较。说实话像什么别人比我 ...

图灵奖得主写的深度学习入门教材:Deep Learning

这本书是两位图灵奖得主Ian Goodfellow和Yoshua Bengio,以及深度学习专家Aaron Courville写的入门教材。相比于更基础的Aurélien Géron人工智能入门教材:Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow,这本书所需要的基础要多一些,包括数分、线代、概率论,还有一些机器学习基础。由于我并非人工智能领域的专家,这本书也并没有怎么读,所以直接引用这本书的官方介绍。《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便 ...