·

计划开发弦圈的桌面端版和APP版

发布时间:2024-12-14 22:52:14阅读量:157
普通文章
转载请注明来源

由于如今是后移动互联网时代,很多人在碎片化时间基本上都是用手机,手机用户群体庞大。加上弦圈本身也有不少手机端的访客,占比有时略高于电脑端,有时略低于。而弦圈目前只兼容了移动端浏览器,并没有一个真正给手机用的APP。

因此,补上弦圈APP能在一定程度上弥补手机端体验的缺失。而桌面端,只是顺带的事情。其实我一直以来都计划开发弦圈桌面端+APP,只不过原计划是在网站运营好了以后再做打算,之前在小红书也有人说想我弄个APP,我当时就说人手不够弄不了。为什么现在突然决定弄呢?其实是因为我感兴趣😂,并且这段时间也闲来无事,网站运营先放一放了,前面高强度宣传引流+更新内容,属实吃不消,而且效果也不太满意。

其实当时开发弦圈网站,确实只是为了应付毕设,不过后来我逐渐对网站开发感兴趣,因此就把它做得更好了。网站的名字刚开始也不叫弦圈,而是叫诗词工作室,后来又改成兵水行,总之名字记得改过好几次。网址刚开始是poemstudio.fun,后来还买了chordspace.cn,现在才改成这个。其实刚开始我是打算做APP的(做安卓APP),不过后来忘记是啥原因了,还是觉得做网站比较合适。

现在为啥又说对写APP感兴趣了?是因为我这段时间了解了不少跨平台开发框架,可以用前端的语言开发桌面端应用以及手机端APP,也就是说我可以直接一套代码同时用于网站、桌面端、APP。这无疑能够节省我大量的时间,直接用自己熟悉的语言进行开发,避免了又要重新开始学一样东西。当然,因为桌面端、APP毕竟跟网站不同,很多东西还是需要改的。原来昨天桌面端应该能整出来了,我用的是tauri来生成exe文件,可惜因为Nuxt.js这个框架的问题,测试的时候没事,一打包就不行,请求不了后端。

而对于APP,我是打算直接从头开始写了,但不是直接写安卓开发或者ios开发,我对比了Ionic、Tauri和React native,目前是选择了React native。首先我是不打算用Vue来写了,因为被整出心理阴影了,所以我选择用React。而Ionic感觉除了自带一个UI库外,跟React native比没有明显优势,React native用的人最多,生态更加强大,我不想再像以前那样遇到问题找不到解决方案。而Tauri感觉更加适合整桌面端,跨平台开发桌面端除了Tauri就是Electron,而reddit上的人都说Tauri比Electron要好,虽然用Electron的人更多。

关于这个APP目前也是随缘写,感觉即便是跨平台,也是跟原来的网站开发不太一样,不少原本能用的东西,现在也得找别的东西代替。同时,后端也得相应的改一改,配合APP,总之感觉也还是很麻烦。

目前来看,开发弦圈APP应该也需要很长时间,我目前只是感兴趣随便写写,写个网站都已经这么累了,再写个APP不敢想。弦圈单单开发就花了我六个月的时间,加上后面上线以后的几次大改,n次小改,前前后后不知道花了多少时间精力。写代码真的就是个苦力活,高级板砖,关键是我还没收入。。。

加上用了Nuxt.js这个框架,各种乱七八糟的问题层出不穷,现在一提到开发新功能,我心里就打个寒战。之后我也会慢慢把原来的代码迁移到Next.js上去,React的生态更加强大,出了问题好歹更有可能找到答案,同时找人写代码也好找,因为写的人多。

最后也欢迎对弦圈感兴趣,且有编程能力的人加入我,帮忙开发弦圈。目前这个APP,一个人写的话,保守估计完整版全部开发完,至少得一个月的时间。不过目前来看有没有APP其实影响也不是很大,我也完全可以先弄个非完整版弦圈APP,比如说整个APP就只能看、点赞,其他都干不了。

0 人喜欢

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

Charles Rezk拓扑学notes:Compactly Generated Spaces

本notes主要讲的是拓扑学中$k$-spaces与$k$-Hausdorff space的相关概念,之所以保存这份notes是因为我当初学习高阶范畴的时候,刚好需要用到这些概念。比如说,无穷范畴的定义就需要用到他们:A topological category is a category which is enriched over $\mathcal{C}\mathcal{G}$, the category of compactly generated (and weakly Hausdorff) topological spaces. The category of topological categories will be denoted by $\mathcal{C}at_{top}$.而抛开它与无穷范畴的联系,仅仅考虑它在拓扑学本身的意义,我觉得这也是本拓扑学方面有趣的notes,不仅是因为有趣的概念如$k$-空间、$k$-豪斯多夫空间,还有紧致生成的空间,还包括一些有趣的结论。总之,对高阶范畴、或者更深入的拓扑学感兴趣的人,可以看看。PS:作者不再提供附件下载。

Linus Kramer之拓扑群notes:Locally Compact Groups and Lie Groups

本notes顾名思义是关于局部紧致群和李群的,开篇先从最基本的拓扑群开始讲起,我当初就是靠这些内容补充拓扑群相关的基础的。为啥没有进一步往下学这个notes,一来是我不需要,二来是这个notes是残缺的,只写到第二章就没有了😅,即只有下图中画圈的部分。目前这本notes在网上已经绝迹,我今天倒是找到另一份残缺版,不过标题改成了Locally Compact Groups,内容倒是比之前的残缺版多一些。既然是属于稀缺资源,因此本notes除了学习价值以外,还有一定的收藏价值,因此我在此将该notes的两个版本都分享给有需要的人。PS:作者不再提供附件下载。

陈省身微分几何经典教材《微分几何讲义》

一说到陈省身经典的微分几何教材《微分几何讲义》,就勾起我很多回忆。这本书是我初三时期入门微分几何的教材,虽然相比于Loring W Tu微分几何经典入门教材:An Introduction to Manifolds的教材没那么好理解,但是却比王幼宁的《微分几何讲义》更加的友好。我当时真的挺喜欢陈省身的教材的,虽然以我如今的水平看,当时的我并没有真正的看懂这本书,但这是我微分几何的启蒙书。我人生中看的第一本微分几何的书是王幼宁的《微分几何讲义》,但是我虽然很有兴趣,但却没能读下去,因为开篇就直接看不懂。而陈省身的《微分几何讲义》至少我能读下去,不至于开篇就直接来那么难的东西,我也是靠这本教材知道了很多微分几何的重要概念。我到高一还在看陈省身这本教材,直到后来高二为了读懂Jürgen Jost黎曼几何与几何分析教材:Riemannian Geometry and Geometric Analysis,我不得不看自己当时嫌弃的Loring W Tu的An Introduction to Manifolds,才打开了新世界,原来还是这么好看的微分几何入门教材,Loring W Tu的书确实比陈 ...

初中生如何自学数学?

知乎提问:我想这样子自学数学?纯兴趣爱好。我想从高中数学开始自学,用教材帮这本教辅书自学。然后学完高中后整理一下初等数学的知识。是不是就可以开始自学高数了?现在我打开高数好多证明题和不等式都不会做。然后把高等数学,数学分析,线性代数,高等代数,概率论与数理统计,复变函数与积分变换,实分析,复分析,泛函分析,抽象代数,代数几何,长微分方程,偏微分方程,微分几何都学完。大致就是这样的人生规划,初等数学学透了是不是就可以理解学习高等数学了?我的回答:我觉得按部就班的按顺序学习没多大意思,我初三的时候是先把导数、积分这些高中最难但却是微积分最基本的概念“学懂”,然后才学别的比较基础的概念如集合。原因无它,就是因为当时这些更感兴趣。因此与其纠结于把什么学透了再来理解什么,不如换成先尝试理解什么,理解不了再来理解什么。我初三的时候除了学会了导数、积分、加速度这些高中数学、物理的概念,但也没太过深入。顶多再学了个正余弦定理拿来应付中考。我从初中开始养成的习惯就是,对什么感兴趣就直接学它,学不懂再看其他的,因此我初中的时候还直接学了范畴的定义(只是看懂了表面的定义)。直到初三升高一的假期,我才买了高中 ...

点集拓扑求救

以及有没有推荐的点集拓扑教材

我翻译了Wiki、nLab、Stack Project的部分条目,以及一些教材中的定义,全放到了数学百科中

一两个月前,网站浏览人数比较少的时候,我也比较空闲,因此花了一些时间翻译了国外Wiki、nLab、Stack Project的部分条目,同时,我还将一些教材中的定义以及少部分自己写的英文notes中的定义翻译成了中文。然后我将这些翻译好的内容全都放进了数学百科中。现在因为新建了好几个子圈子,我也陆续将这些词条分门别类放进了不同的子圈。我之所以会翻译这些东西,一来是因为中文互联网的数学资源属实是过于稀缺了,每个学数学的人想要更好的发展都离不开英语这一关。但是总有人对数学感兴趣却英语不好,这也意味着有一部分人会欣赏不了英文的一些美妙的数学。二是因为词条是可以插入到文章里的,这会方便看文章的人快速查看相关术语的意思,所以在弦圈里多放些词条不仅有利于网站内容更丰富,而且能让学习交流变得更加顺畅。下面我整理一下我具体翻译了哪些词条,其实也不是很多。主要问题是翻译数学内容本身并不耗时间,真正耗时间的是输入Latex代码😅,即便我写数学好几年了,Latex也早就熟练运用,但我还是感觉在写数学的过程中Latex的输入占用了过多时间。层预层局部赋环空间赋环空间概形凸秩$p$-可除群函数向量向量空间反同态 ...

语奥中的数字谜研究(一) 基础数词

语奥中的数字谜中有许多技巧,如果纯靠推理难度很大。系列文章将介绍数字谜技巧,每篇文章都无限期更新。第一篇文章,让我们走进基础数词。基础数词,顾名思义,就是一个语系中各个语言基本相同的数词。基础数词的特点就是稳定性,以至于可以帮助我们快速确定题目中一至几个单词的意思。以下举一些常见语系的例子来说明基础数词的作用。1、尼日尔(大西洋)-刚果 语系  $(a)ta=3$例题:2023 IOL T5  $taanre=3$$1.be ŋ jaaga=20 \rightarrow bee-x=20*x$$2.taanre=3 \Rightarrow ŋ kwuu \; x=80*x $$3.baa-y=y+5$$4.kampwoo=400 \Rightarrow kampwɔhii \; z=400*z$2、汉藏语系 $sam=3$$nga=5$例题:2024 APLO T5 $as ɣm=3$$pungu=5$

失业、分配不平衡和结构性转变:人还能否“卷”过AI

白果/文 人类对AI,尤其是AI冲击社会就业与收入分配的担忧,其实由来已久。20世纪70年代至今,我们至少经历过三波AI发展的大潮。当一轮轮潮水退去,人们发现人工智能似乎并没有想象的那么厉害,不禁有了更自信乐观的理由。然而,这一轮AI的发展速度和能力似乎不可同日而语。ChatGPT(Generative Pre-Trained Transformer)及各种生成式AI工具的出现,使人类可以用自然语言的方式给计算机发出指令,这在很大程度上打破了某些专业壁垒。虽然当前AI生成内容在准确度、独创性上还有待提高,但替代人工、降本增效的能力显而易见。那么,此轮AI发展将冲击哪些职业,又是否会如乐观者期待的那样,带来大量新的工作?在尝试回答这两个备受关注的问题之外,笔者也试图分析AI带来的社会结构性转变,以及为了应对这些转变,个体和社会应作出怎样的努力。我们看到,目前AI工具的发展,可能会导致技术性失业、收入分配结构的恶化尤其是“极化”效应,加剧各种社会问题。而要想让技术进步更好地实现普惠价值,我们需对现有制度进行深入反思,尝试对社会系统进行革新和再设计。归根结底,技术的社会价值实现和进步方向最终 ...

叔本华:人类是一步一步地迈向死亡的存在物

丹麦哲学家齐克果(Sren Kierkegaard)说:「什么是诗人?一个不快乐的人:他把深层的痛苦埋在心里;但他的唇舌是如此形塑,以致从中经过的叹息和哀嚎,都成了动人的乐章。」诗人好像真的是比较不快乐。在一个诗人选择自杀后,我们一般都对之予以同情和理解,彷彿诗人们自我了结生命是可以谅解的。种种的思绪,不禁令人想起德国哲学家叔本华(Arthur Schopenhauer)对艺术和自杀的一些想法。叔本华向来以所谓悲观主义哲学闻名,不少没读过他的人也大概知道这点。所谓悲观主义,是一种以负面的角度去理解价值的方案。而所谓负面,又有几个面向。首先,叔本华说,人类是一步一步地迈向死亡的存在物,从这个存在特质去看,人类的存在目标和目的也就指向着死亡。「假如存在的目标是死亡,那为什么不能现在就死?」一位诗人或许正在如此提问。还不能马上就死。正因为人是「步向死亡」的存有者,人的存在处境便是动态的──就于现在的每一刻。因此,「现在」便有了独特的价值。就如他在《作为意志和表象的世界》(The World as Will and Representation)第一册中解释:真正的存在就只在现在。现在一直往过 ...