·

失业、分配不平衡和结构性转变:人还能否“卷”过AI

发布时间:2024-12-04 21:21:53阅读量:155
普通文章
转载请注明来源

白果/文 人类对AI,尤其是AI冲击社会就业与收入分配的担忧,其实由来已久。20世纪70年代至今,我们至少经历过三波AI发展的大潮。当一轮轮潮水退去,人们发现人工智能似乎并没有想象的那么厉害,不禁有了更自信乐观的理由。然而,这一轮AI的发展速度和能力似乎不可同日而语。

ChatGPT(Generative Pre-Trained Transformer)及各种生成式AI工具的出现,使人类可以用自然语言的方式给计算机发出指令,这在很大程度上打破了某些专业壁垒。虽然当前AI生成内容在准确度、独创性上还有待提高,但替代人工、降本增效的能力显而易见。那么,此轮AI发展将冲击哪些职业,又是否会如乐观者期待的那样,带来大量新的工作?在尝试回答这两个备受关注的问题之外,笔者也试图分析AI带来的社会结构性转变,以及为了应对这些转变,个体和社会应作出怎样的努力。

我们看到,目前AI工具的发展,可能会导致技术性失业、收入分配结构的恶化尤其是“极化”效应,加剧各种社会问题。而要想让技术进步更好地实现普惠价值,我们需对现有制度进行深入反思,尝试对社会系统进行革新和再设计。归根结底,技术的社会价值实现和进步方向最终由人类决定。

1.失业危机与产生新工作的可能

在此前几轮自动化技术浪潮中,冲击的主要是重复性或是对专业技能要求较低的职业。但AI大模型具备了认知能力、分析能力、推理能力和创造能力,因此一些在传统意义上被认为高度专业化的职业,将可能受到极大的冲击。

人力资源咨询公司Challenger的一份报告显示,2023年5月,美国因AI替代所造成的失业人数达3900人。这是此报告第一次将AI作为失业的主要原因之一,而所有明确因AI产生的裁员,都发生在科技行业。

综合来看,我认为具有以下特点的职业,可能会首当其冲受到影响:

第一类是对结果的精度和标准性要求不高的职业。比如美术设计,虽然AI尚不能生成顶级作品,但已经能做出“够用”的设计。在海报设计、营销推广物料设计等相关应用场景中,AIGC工具已经可以在很大程度上代替设计师。

第二类是知识和创意行业内相对辅助性和初级的岗位。比如法律案例的整理工作,编程中相对模块化的工作等。这些工作往往由年轻人担任,因此这类替代不但会增加年轻人就业的难度,也会使他们丧失在工作中不断提升专业能力的机会。长期来讲,对社会整体人力资源的培养和积累是极其不利的。

第三类是专业性高、但业务可模型化程度也高的工作。这可能最让大家感到意外。实际上,很多对专业性要求很高的工作,其可模型化程度也是很高的。比如医疗工作者的诊断环节,从前医生通过学习大量病例、阅读书籍和积累临床经验,习得一套思考和判断模型,现在,这个过程AI也可以完成,甚至完成得更快更好。

第四类是个性化需求高但目前这些需求尚未被完全满足的行业。比如教育、陪护等行业。这些行业面临的冲击可能不是一种简单的替代,而是行业洗牌,即行业主体及其组织方式的转变。例如AI可能会推动教育的形式从一对多,向着更加因人施教的方向转变,主导行业的也许将不再会是学校、医院等传统机构。

有很多人会指出,各种替代效应的产生尚有时日,现在不必杞人忧天。的确,有不少因素可能会减缓AI的大规模铺开,包括对应用场景的持续开发、社会的接受认同、相应基础设施的配套改造,以及法律法规的持续建立等。但AI的能力提升与演进,跟之前碳基生命体学习和进步的速度是完全不可同日而语的。看一下Midjourney从去年发布到现在的能力提升幅度,就可以很直观地感受到这种速度的不同。目前基于大模型的技术路线已经较为成熟明确,技术能力不断提高,加之资本涌入、产业共识形成,所以AI的发展和冲击一定会到来,而且其速度很可能超越大多数人的预期。

有人也坚信,更多新的、更好的工作一定会被创造出来,就像此前人类工业化进程中被反复印证的那样。

我们看新工作能否产生,首先可以看跟新技术直接相关的新工作岗位有多少。

就像在移动互联网时代到来之前,我们无法想象现在复杂的APP生态和相关岗位一样,现在我们其实还不能完整地想象与AI相关的工作有哪些。目前可以推测的,AI的持续发展会带来对算法工程师的需求增长,但这种增长是有限的,而AI带来的数字世界的进一步发达和繁荣,会是更多岗位增长的来源。

比方说,随着未来人类生活在虚拟世界的时长和沉浸度增加,可能会诞生许多虚拟世界的产品内容设计职位,就像我们目前在Roblox平台上看到的那样,会有人专门捏脸、设计虚拟人物服装、台本、游戏规则等等。我想随着人类对娱乐和精神生活需求的上升,创意型行业的发展前景仍然是可观的,也将持续吸纳和产生更多的岗位。

其次,我们可以看看新需求产生的潜力。这首先与时代特征有关,比如当人类从农业社会进入到工业社会,那时大量与工业制成品相关的需求没有得到满足,于是对相关新产品和服务的需求会被大量释放。

但AI时代,是否还有那样一个巨大的潜在需求空间没有被挖掘出来?当人们生活在一个全球范围内都更统一的虚拟世界和数字空间里,多元化的需求和供给是否还有一个较大的新增量?笔者对此并不乐观。

2.警惕收入分配结构恶化

学者们研究发现,早期自动化过程对收入分配的影响中有一个重要特征,那就是中等偏低技能需求岗位的缩减,和高技能需求岗位的增长。根据Tuzemen和Willis的评估,从1983年到2012年间,中等技能需求岗位从59%下降到45%,但高技能需求岗位从26%上涨到37%。总体的变化趋势对社会进步还是比较积极的。

虽然目前大模型应用尚在极早期阶段,但据美国印第安纳大学博士AliZarifhonavar的研究预测,此轮受AI影响最大的是一些专业人士和技术人员。也就是最容易被替代的工作,恰恰是那些高技能、高回报、普遍被认为是白领和金领的工作。这个人群恰恰是最具消费能力的一群人,他们收入水平的下降,以及对工作安全性的不良预期,不但会损害中高产阶级的收入占比,也将削弱经济总体的需求水平和增长动能,其影响不容小觑。

大家都知道,一个健康的社会收入分配结构应该是“纺锤形”,中间厚、两边薄,但目前AI工具的发展,不但会加重人力劳动和资本回报的不平衡,还可能会因其对智力回报不平衡的强化,进一步加深收入分配的“极化效应”。

因为技术会改变不同生产要素在经济生产中的重要性,例如工业革命就促使资本相较于人力劳动的重要性明显提升,大模型带来的是智力要素的重要性明显提高。比如,一个建筑设计师在过去可能受到自身效率的限制,需要依托更大的团队和平台。但现在如果他的创意、声誉足够好,就完全可以通过个体或者是小团队的方式接到比之前更多的工作。于是,最有创造力的那群人,其智力附加价值会变得更高,占据更多资源,造成所谓的“天才效应”,占据收入分配中越来越高的比例。

但这并不意味着新技术就是“原罪”,而是要求人们对收入分配制度进行调整,避免这种极端不平衡的问题持续加剧。技术进步的影响不应止于生产效率的提升,也要看它能在多大程度上带来跨行业的溢出效应。

关于跨行业的溢出效应,最经典的案例来自福特公司。上个世纪初,福特公司通过改造生产流程提升了汽车制造效率,但他们并未止步于此,而是推出配套措施,大幅降低了汽车价格,同时大幅增加了员工报酬,还把每天工作时间从9小时减少到8小时。尽管加薪后人工成本大幅提升,但劳动力流动率大幅降低,高收入支持工人释放各种消费需求,也可以买得起福特生产的汽车,促进了供给侧和需求侧的良性互动和发展,使之成为跨行业溢出效应一个教科书般的展示。

由此,这种分配与生产相互促进的增长模式也被一些学者称为“福特主义”,它告诉我们,要让技术进步更好地实现普惠价值,也需要对现有的制度性安排做出调整,甚至是重新设计。

因为金字塔顶端那1%的人口,无法产生99%的人口规模的消费力,也不会转化为足够能消化现有人力资源的投资。极端不平衡的分配结构不仅会阻止跨行业溢出效应的发挥,还会加剧各种社会问题。

刘慈欣在短篇小说《赡养人类》中就讲了某虚拟星球上这样一个极端化的故事。在那个世界里,最聪明的一个人占据了星球上所有的资源,而其他人被赶到地球,地球因此遭殃。我们不希望这样的事情发生,因此才要提前思考,未雨绸缪。

3.从个体到社会,如何应对结构性转变

不管短期内我们自己的工作是否会被AI取代,当洞察到AI对社会经济带来的结构性转变,我们会发现,在不久的将来,每一个人可能都会受到它的影响。

第一个转变,是产业的整合程度、系统化程度越来越高。随着AI深入工作和组织,其改变的不止是个体工作,而是产业总体的协同和组织模式。在AI的辅助下,越来越多的经济和社会协同会进入到整体自动化的体系,机器与机器之间形成庞大且复杂的协作网络,并逐渐将人排除在外。比如,如果自动驾驶技术全面落地,整个交通系统会成为一个整体,系统指挥中心就像大脑,全面控制各类交通设备的协调和运行。这种趋势落在每个行业,就意味着各行业的整合潜力大大上升。如果你所在的行业目前行业集中度偏低,也许目前技术的进步会带来巨大的创新空间,值得好好思考和把握。

第二个转变,是AI对顶尖人才的赋能,会极大地增强中小企业的行业竞争力,而原来大企业占据的资源优势会进一步丧失。我们会在各行各业中,观察到组织小型化和行业集中化两种趋势同时增强。特别是在一些创意型行业,比如广告、游戏、建筑设计等,这个趋势可能会非常明显。在AIGC领域本身我们就能看到不少创业型小公司的巨大能量。颠覆了整个设计行业的Midjouney,就是一家只有十几人的公司。

第三是行业竞争格局的变化速度、产品迭代速度都会进一步提高,“乌卡时代”(VUCA)会更加“乌卡”。这种影响的范围是广泛的,各行各业都很难置身事外,需要企业家们有清醒的认识。

面对以上这些变化,就个体而言,首先要求我们调整自己的能力重心。以前的白领工作侧重于认知和分析,未来这是不够的,至少泛泛地分析是不够的,我们需要具有更强的原创性、洞察力、感受力、探索能力和创造力。

然而,个体的努力改变不了AI将要带来的结构性问题。当技术的发展已经与人类的进化融为一体,我们必须对现有制度进行深入反思,尝试对社会系统进行革新和再设计。

首先需要反思的是我们的教育体系。设想一下,如果我们有一个热爱绘画的孩子,面临AIGC强大的绘画功能,他/她该如何自处?他们还会有动力经历那漫长而痛苦的练习过程,最终成为一个也许并不是第一流的画师吗?然而,如果我们的孩子现在不去绘画,不去阅读,不去思考,而是把这些任务都交给AI,他们又如何成长为一个拥有探索力和创造力的人呢?如果我们希望激励他们的创造性,他们走这段路的动力到底来源于哪里?教育体系该如何提供这些动力?

另外,我们需要改变目前单一标准的内卷社会。在人类的生产能力还达不到人类需求的时候,效率成为衡量个体和组织非常重要的标准。但实事求是地讲,在这个维度上,碳基生命终归不会是硅基生物的对手。那么,社会的发展进步又应该如何定义呢?我个人认为,有两个方面需要同时纳入考量。

一方面,我们需要让人类社会的财富进一步增长。但这里的关键点在于怎么定义财富。首先需要强调的是,财富增长的核心其实不是量的积累,而是多样性的提高。为什么我们认为现在人类社会的财富远远超出历史上任何一个时期?不是因为世界上有了更多的黄金,而是因为每一个普通个体可以享用的产品和服务的丰富性是空前的,而这种多样性的积累是人类持续创新的结果。更需要明确的是,财富不仅仅是一个物质层面的概念,未来财富的定义将越来越偏向情感、文化、精神和心灵。

第二个方面的衡量应该就在于人本身的发展。当技术分担了人类的工作,我们如何增强内心的充实感和满足感?我想应该有越来越多的个体,能够有机会在更多元的维度上,开发和追求自己的内生动力,并在社会上找到自己的位置。

归根结底,技术到底是能够为人所用,还是取代人类,不取决于技术本身,而是取决于我们要建设怎样的社会制度。如果我们的制度为人类的贪婪服务,技术就会加强这一点。但我们也可以利用技术更好地保护人类。比如随着生产能力的继续发展,我们可以考虑缩短每周的工作时间,建立更广泛的社会保障体系,降低人的商品化属性,为社会性、创造性的工作提供更多保障等等。

事实上,人类生产能力的每一次跃升,并不会自然地带来群体福利水平的提升,甚至往往会伴随着一段阵痛期。只有借此反思和重新设计我们的制度体系、组织目标、价值导向,每一个个体都开始思考和行动,我们才能驱动社会向更美好的方向进化。

------------------------------------

本文转自失业、分配不平衡和结构性转变:人还能否“卷”过AI

0 人喜欢

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

把加法与乘法结构拆掉再复原?望月新一如何引发代数几何变革

据《朝日新闻》,望月新一关于ABC猜想的论文可能将要发表,审核它的期刊是《数理解析研究所公刊》(PRIMS)。媒体对此的报道大抵聚焦在两点上:一是这个期刊就是他的工作单位主办的,一是这个论文几乎无人能懂。作为一个数学研究者,我个人并不担心望月新一的利益冲突问题,不但因为数学界有一套相当完备的系统用以避免利益冲突,在选定编辑和审稿人时有良好的避嫌标准,更重要的是:他没有动机。他已经功成名就,不需要什么文章。数学这种东西,对就对,错就错,不存在编数据或者实验造假,一切细节都在文章里。要是错了,无论强行发表在什么期刊上,也终有一天会被发现,而一发现就无可抵赖,只能重新修补。但是他的理论绝不仅仅是一个“几乎无人能懂”的怪物而已。它所试图解决的根本数学问题,它背后的当代数学界的面貌,它反映出的做数学研究是怎样的状态,这里面还有太多的故事并不是、也不应该是只有几个人能懂。甚至也许可以说,这些故事能让人直观地感受到:现代数学是什么。破题望月新一的研究领域,是所谓的“远阿贝尔几何学”。如果一句话解释这个领域的话,我只能这样写:有理数的绝对伽罗华群,以至任意代数簇的平展基本群,它们“远离阿贝尔”的部分, ...

将反向传递看成函子:强化学习的一个复合视角

这篇文章是数学家与计算机科学家合作写的,将范畴论应用于人工智能的强化学习。本文表示,强化学习算法与强化学习算法的复合,还是一个强化学习算法,因而所有强化学习算法构成一个范畴$\textrm{Learn}$。然后在$\textrm{Learn}$里考虑神经网络,并证明在一般情况下,梯度下降也是复合的。如果对纯数学理论,在计算机或者AI有什么应用感兴趣的人,可以看看。我当时下这篇文章,也是好奇代数领域在AI方面有啥应用,其实当时已经知道有个叫热带几何(Tropical Geometry)的领域,就是代数几何在计算机的应用。因为当时AI就很火,但AI可解释性需要很多数学来解决,他们解决不了,所以我留着这篇文章也是打算之后写篇类似的AI应用的文章。

Tammo Tom Dieck代数拓扑教材

EMS出版的代数拓扑教材Algebraic Topology,作者是Tammo Tom Dieck。本教材相较于Hatcher的书,没有那么太多的插图,并且内容更加抽象。本书知识密度高,内容精炼简洁,没有过多的废话。很适合有一定代数基础,且喜欢直接切入主题,快速学习的人。对于还未入门的小白而言,这本书不太适合作为代数拓扑的入门教材。我高中的时候就在看这本教材,但总在一些地方无法彻底理解。但这本教材吸引我的地方,一是它的内容涵盖面够广,并且知识密度够高,能够让我短时间内掌握代数拓扑方面的基础知识;二是它的描述更加的抽象,并且语句简洁明了、容易理解,很符合我的口味(这也是我当时选择代数几何的原因)。关于本教材与其他代数拓扑教材更具体、更专业的对比,请看Algebraic Topology I: 对教材跟概念的一些论述。PS:作者不再提供附件下载。

望月新一关于abc猜想的天书证明:宇宙际Teichmüller理论

望月新一以及他的Inter-universal Teichmüller Theory(宇宙际Teichmüller理论)可以说是非常出名,相较于费马大定理证明的晦涩难懂,宇宙际Teichmüller理论才算是真正的天书,全世界没几个人能看得懂,就连大佬Faltings都看不懂。望月新一是Faltings的学生,Faltings以“暴力横推”的风格闻名,张寿武说过Faltings的风格就像直接开着推土机把山碾平了过去。并且Faltings看论文都是只看前沿(introduction)就能知道整篇论文的主要定理,甚至还能直接证出来。见望月新一与他天书般的论文,展现了纯数学与我们的距离可见Inter-universal Teichmüller Theory有多难懂,它涉及到代数几何一个高深的领域:远阿贝尔几何(anabelian geometry),顾名思义就是考虑平展基本群$\pi_{1}^{et}(X,x)$远离阿贝尔的部分,远阿贝尔几何源于Grothendick的一封入职信Esquisse d'un Programme,他于其中提出一个宏大的理论,然而最终他却没能将其实现。而望月新一可 ...

Algebraic Topology I: 对教材跟概念的一些论述

关键词:Homotopy, Homology, Groupoid, Foundamental Group, Van Kampen Theorem, Covering Space, Covering Projection, Fibration with unique path lifting, Cofibration.Tammo tom Dieck 在他的代数拓扑教材中写了非常漂亮的前言,在点出代数拓扑精髓的同时还包含一些形而上学的哲思,并且简略地介绍了代数拓扑里面的两个核心词汇,同伦(homotopy) 跟同调 (homology)。我简要地部分翻译如下:代数拓扑是连续数学跟离散数学交相辉映的学科。在连续数学里面,我们用拓扑空间和连续映射这样普遍的形式语言将其公理化。而离散数学则是被我们用来表达代数和组合概念的。在数学语言中,我们用实数来概念化连续形式,但我们建立实数时却是要用到整数。下面举个例子,我们直觉地认为时间是一个连续的没有间断的流动过程,是由一系列不停止的瞬间后继构成的。但在实践中,我们却使用被定义为有周期性的离散模型工具跟自然过程。同样地,我们意识到空间是一个连续体,但我们 ...

怀尔斯的费马大定理证明

费马大定理的证明可以说是算术几何的一个重要里程碑,当年怀尔斯虽然很小的时候就被该问题所吸引,从而选择做一个数学家。但作为一个这么多年都无人能破解的难题,怀尔斯也是兜兜转转,他也没一开始就打算攻克这个猜想。据说,是代数几何取得突破性进展之后,他才觉得是时候攻克费马大定理了。最后他成功证明了谷山-志村猜想,从而证明了费马大定理。可以说怀尔斯能证明费马大定理,是刚好生在一个合适的时代,并站在了巨人的肩膀上,从前人手中接过火炬。怀尔斯关于费马大定理的证明,就是这篇论文Modular elliptic curves and Fermat’s Last Theorem。该论文非常晦涩难懂,没多少人能看得懂,可以说能彻底看懂费马大定理证明的人,都是圈内大佬。论文中涉及的知识面很广,包括椭圆曲线、模形式、伽罗华表示论、代数数论、类域论、群概形等等,想要理解费马大定理就得先理解前面这些理论。不过虽然我们看不懂,但该证明还是非常具有收藏价值的,看不懂也能看,也能欣赏嘛。并且对于做算术几何的人来说,可以用这篇论文来指导自己的学习和研究。Peter Scholze当年不也一上来就看费尔马大定理的证明,虽然un ...

评审8年终获发表,数学天才望月新一证明abc猜想,全球只有十几个数学家读懂但争议未消

abc猜想,数学界悬而未决的重要猜想,它的证明过程经过8年的同行评审,终于要在期刊上发表了。论文作者是日本的天才数学家望月新一,他33岁起就在京都大学担任数学教授。这一次望月新一的证明,全篇超过600页,2012年就已发表,但足足经过了8年的同行评审才通过,期间开过多次研讨会——但依然有很多数学家无法理解。据说,这篇论文全球只有十几位数学家深入研究了证明过程。许多数学家根本无法指出证明过程是对是错,因为根本看不懂。4月3日,日本京都大学召开了新闻发布会,宣布望月新一证明了它。包括Nature等在内的权威科学传媒组织,也这一重要进展进行了报道。望月新一没有出席昨天的发布会,他的另外两位同事说,当他知道自己的论文被接收,终于松了一口气。多年来他从未在公众场合露面。但也不是没有争议,因为当初接收论文的期刊——日本的PRIMS,主编正是望月新一本人。如果他的证明是正确的,那么将彻底改变数论。同时也正因为如此,才有了学界长达8年的争论。什么是abc猜想?abc猜想,最初由法国数学家约瑟夫·奥斯特莱和大卫·马瑟,在1985年提出。并且一经提出,abc猜想就成为数论领域的重要猜想之一。只是和哥德巴赫 ...

望月新一与他天书般的论文,展现了纯数学与我们的距离

导语:一位日本数学家声称已经解决了数学领域最重要的问题之一。但是,几乎无人能懂他的证明,无从判断对错。2012年8月30日的早晨,望月新一悄悄地在自己的网站上发布了4篇论文,总计长达500多页,密密麻麻地布满了各种符号。它们是作者孤独工作了十多年后的成果,可能会在学术界引起爆炸性的影响。在文中,望月新一声称解决了abc猜想——一个27年来在数论领域一直悬而未决的问题,令所有其他数学家都束手无策。如果望月新一的证明是正确的,它将是本世纪最令人震撼的数学成果之一,或将彻底改变整数方程的研究。David Parkins不过,望月新一本人并未对自己的证明大做文章。他任职于日本京都大学数理解析研究所(RIMS),是一位令人尊敬的数学家。他没有向全世界的同行宣布自己的研究成果,只是将论文发布在网上,等待世界去发现。第一个注意到他的论文的可能是玉川安骑男(Akio Tamagawa)——望月新一在RIMS的同事。和其他研究人员一样,玉川安骑男知道望月新一多年来一直在潜心钻研abc猜想,并且已近成功。当天,玉川安骑男通过电子邮件把这个消息发给了他的合作者之一、诺丁汉大学数论理论家Ivan Fesenk ...

分析学大师Elias M. Stein的分析系列教材

分析学大师Elias M. Stein(曾是陶哲轩的老师),写了四本分析学系列教材,统称为普林斯顿分析学讲座(Princeton Lectures in Analysis)。他们分别是:I Fourier Analysis:An Introduction II Complex Analysis III Real Analysis: Measure Theory, Integration, and Hilbert Spaces IV Functional Analysis: Introduction to Further Topics in Analysis当时集齐这四本书花了我不少时间,似乎这四本书知名度不一,我下的第一本是复分析教材Complex Analysis。现在我将这些好东西拿出来分享给有需要的人。PS:如果需要中译版的,目前只能找到《实分析》和《复分析》两本,链接:伊莱亚斯 M. 斯坦恩(Elias M. Stein)《复分析》与《实分析》教材更新:作者不再提供附件下载。