·

Atiyah:Commutative Algebra使用攻略

Published at 2024-12-01 14:32:09Viewed 137 times
Common article
Please reprint with source link

刷题刷傻了~

这次是交换代数的经典教材,M.F.Atiyah,I.G.MacDonald的Introduction to Commutative Algebra,以下简称A&M。A&M在知乎上也很有声誉,基本是公认的交换代数入门书。A&M很薄,128页,我大概读了二十余天,习题全部刷完了,觉得相当有收获。难度有,但并没有想象中的大,我完全能接受。A&M几乎绝版了,不过可以去专门进口书店买到,打印也不失为一个好选择。

说起来我本来打算把交换代数放在明年再读的,但恰逢我校大二同学开展了一个交换代数讨论班,用的这本书,并且我导也推荐我现在读,所以大概就是这时候读了。确实感觉时机刚刚好。

A&M是写给上个世纪七十年代的三年级本科生的讲义,很多地方不经雕琢,自成璞玉。形式化风格很是明显,鲜有大段启发性的说明或展示动机,大多是定义,定理,命题,推论的罗列,很“干”。一些证明也比较简洁,用作者自己的话说,他省去了机械的步骤;但相对的,我觉得他重要思路都点到了,真正跳步的地方比较少。我很喜欢这本书,首一的优点,它很薄,且基本的交换代数都覆盖到了,第二,它习题非常优秀,200余道,质量相当高,提示相当到位,谁刷谁知道,是我这种做题家的福音,第三,它的一些在代数几何中的应用不是没有,而是出现在了习题里。所以看这本A&M主要要做习题。

此书可以找到完整答案,相关资源也很丰富,非常友好。我也参考了一些。

勘误不是特别多,可以接受。下面一个链接是mathoverflow上的总结的一些勘误:Errata for Atiyah–Macdonald

我觉得我也没什么好说的,没有什么特别有意思的东西,也许是做个提纲?

下面正式开始:

1.准备知识:

线性代数,抽象代数。环一定要学好,标准的抽象代数教材里环一般分两个专题:唯一分解整环和多项式环,这是一定要熟练掌握的。如果学过一点模的话自然更好,比如主理想整环上有限生成模结构定理什么的,这种结论在此书里也是随意使用,假定掌握了的。域的话用不到Galois理论,但会用到一些正规,可分扩张的概念,问题不大。

范畴论,同调代数。此书没怎么使用范畴论的抽象废话,所以不需要严肃的范畴论。同调代数方面一个是蛇形引理,一个是Tor函子(习题里出现的),不会的话临时补也没有问题。

拓扑学。主要是点集拓扑,知道基本的概念,结论就可以了。这本书里研究的拓扑大多比较奇怪,以至不能从欧氏空间角度直观处理问题,所以回归定义形式地考虑问题,把它当成代数学考虑是最好的选择。

参考书目:

【1】、交换代数与同调代数,李克正

查了一些同调代数知识。

【2】、A Course in Commutative Algebra, GTM256, Gregor Kemper

也是一本入门书,讲得较几何化。

【3】、A Term of Commutative Algebra By Allen B. ALTMAN and Steven L. KLEIMAN

作者用现代语言将A&M重写了一遍,并附上了所有习题解答和索引,天地良心!

2.章节具体介绍:

前三章是最基本的概念,结论,也占了本书将近一半的篇幅。四到九章是更进一步的结果。十、十一章介绍了完备化和维数理论,难度有所升级。

进度大概是每天干十道题,由于章节分布不均,有的要看三天,有的只看了一天。

习题的话页数按章序打一下:8-5-8-5-6-2-5-1-2-3-1(最后一章略了一些细节)总页数46,赶上四分之三本Big Rudin了哈。

第一章 环与理想

我讲了这一章的讨论班,大概花了三个小时。此章引入了一些概念,诸如幂零根基,Jacobson根基什么的。命题1.11是比较重要的,注意有限在代数里的重要作用。Zariski拓扑是在习题里出现的,并且贯穿了以后几乎所有章节的习题,足以显示其重要性。其实这个拓扑是素理想间序关系诱导的拓扑,所以要论证某映射诱导同胚当且仅当它保序,这是个直观的,值得注意的一个点。习题里也介绍了仿射代数簇,多项式映射什么的。我比较喜欢的是题26的结论——这也在Big Rudin里出现过。

第二章 模

主要的对象是正和列、张量积。这一章是可以讲得比较范畴化的,但是它处理的还是比较初等。命题2.4实质是Hamilton-Cayley定理。注意代数的环有限和模有限之不同。习题里也介绍了正向极限。24到28结论比较重要,但需要一点同调代数里Tor函子的基本性质,这些都可以查到,不是很难。

第三章 分式环与分式模

这章介绍了取分式这一操作——这可以与取商环同等地视作交换代数中最重要的两个操作,前者决定出确定理想里的理想,后者则决定出含确定理想的理想。这一过程也被称为局部化,它是非常有意义的,它也可以实现一些局部性质和整体性质间的转化。这一章的习题比较难,有一系列关于平坦,绝对平坦,忠实平坦的定义、判别法,也介绍了一些层的概念。一些习题画交换图会变简单。

第四章 准素分解

处理了准素分解的两种唯一性,作者说这是比较古典的内容了。习题17、18是比较有意思的,稍微用了一点超限归纳。我觉得良序定理,序数和超限归纳配合,是非常有力的工具。

第五章 整性与赋值

整性也是一个非常重要的概念,它本质上是通过命题5.1刻画的,它有将环有限转化为模有限的能力。注意上升定理和下降定理可以用来刻画环的维数,也可以诱导出Zariski拓扑诱导的连续映射的一些性质。赋值环最重要的也许是其理想的全序性吧。习题中出现了Noether正规化定理和零点定理,它们是很有几何意义的,但我个人觉得顺序稍有问题,也许正确的顺序是16,18,17,并且17第一问的陈述也有问题,应该是要证明理想不空时,对应代数簇也非空。

第六章 链条件

介绍了升链条件与降链条件,Noether模与Artin模的一些基本性质。看到这里我觉得可以补充一点模的Jordan-Holder定理什么的。

第七章 Noether环

Hilbert基定理是比较重要的。后半部分建立了Noether环上的准素分解,与第四章呼应,这也表明了含Noether环中理想的极小素理想个数是有限的,这会在第十一章讨论维数时用到。习题里介绍了Grothendieck群,这是一种解决问题的范式,很有意义。

第九章 Artin环

摘引书中一句话,大意是Artin环不是因为其广泛而被研究,而是因为其特殊性而被研究。对它,我们可以将其分解为一些Artin局部环的乘积,这就是Artin环的结构定理。

第九章 离散赋值环与Dedekind整环

离散赋值环实际上相当于局部的主理想整环,而Dedekind整环就是由这些环拼接起来的。还有两种等价刻画,通过特殊的准素分解,或是通过分式理想群。习题里面可能会发现一些类似主理想整环的性质,这是因为那些性质是局部性质,而Dedekind整环每一局部均是主理想整环。这一章的习题貌似要大量使用主理想整环上的有限生成模分解。

第十章 完备化

这一章难度有所提升,幸好我有一点p进数的底子。讲到了逆向极限,大量使用了蛇形引理。习题里提到了很广泛版本的Hensel引理。

第十一章 维数理论

介绍了对Noether局部环维数的三种等价刻画:最长的素理想列,长度决定的特征多项式的次数,极大理想根基意义下生成元的最小个数。这实在是很优美的结论。最后也证明了在代数几何中局部维数与超越维数之统一。

3.总结与建议:

这本书整体还是很代数的,内容也未有过时,一些处理可能不是最好的,但也相当精彩,让人看完后很有体会,可以学到很多。A&M小册子的体量也让我读得十分上头,果然只有小册子才能让我产生一口气读完的冲动。

依我的经验看,通读此书并未出现任何不适。也许它动机不甚明显,但我个人认为环与模本身就是很有意思的结构,一些几何观点能帮助理解自然是锦上添花,严肃的代数几何也许专门去学也行。

希望我能不要忘记我学的,至少要用的时候捡得起才好。

下一本是Fulton的代数曲线,这没有合我年初定的计划,果然计划都是用来打破的哈。正好可以磨砺磨砺刚学的交换代数,今天稍微看了看,好像不是很难,希望能继续效率拉满地学习。



转自知乎用户loong:https://zhuanlan.zhihu.com/p/359651478

0 人喜欢

Comments

There is no comment, let's add the first one.

弦圈热门内容

把加法与乘法结构拆掉再复原?望月新一如何引发代数几何变革

据《朝日新闻》,望月新一关于ABC猜想的论文可能将要发表,审核它的期刊是《数理解析研究所公刊》(PRIMS)。媒体对此的报道大抵聚焦在两点上:一是这个期刊就是他的工作单位主办的,一是这个论文几乎无人能懂。作为一个数学研究者,我个人并不担心望月新一的利益冲突问题,不但因为数学界有一套相当完备的系统用以避免利益冲突,在选定编辑和审稿人时有良好的避嫌标准,更重要的是:他没有动机。他已经功成名就,不需要什么文章。数学这种东西,对就对,错就错,不存在编数据或者实验造假,一切细节都在文章里。要是错了,无论强行发表在什么期刊上,也终有一天会被发现,而一发现就无可抵赖,只能重新修补。但是他的理论绝不仅仅是一个“几乎无人能懂”的怪物而已。它所试图解决的根本数学问题,它背后的当代数学界的面貌,它反映出的做数学研究是怎样的状态,这里面还有太多的故事并不是、也不应该是只有几个人能懂。甚至也许可以说,这些故事能让人直观地感受到:现代数学是什么。破题望月新一的研究领域,是所谓的“远阿贝尔几何学”。如果一句话解释这个领域的话,我只能这样写:有理数的绝对伽罗华群,以至任意代数簇的平展基本群,它们“远离阿贝尔”的部分, ...

将反向传递看成函子:强化学习的一个复合视角

这篇文章是数学家与计算机科学家合作写的,将范畴论应用于人工智能的强化学习。本文表示,强化学习算法与强化学习算法的复合,还是一个强化学习算法,因而所有强化学习算法构成一个范畴$\textrm{Learn}$。然后在$\textrm{Learn}$里考虑神经网络,并证明在一般情况下,梯度下降也是复合的。如果对纯数学理论,在计算机或者AI有什么应用感兴趣的人,可以看看。我当时下这篇文章,也是好奇代数领域在AI方面有啥应用,其实当时已经知道有个叫热带几何(Tropical Geometry)的领域,就是代数几何在计算机的应用。因为当时AI就很火,但AI可解释性需要很多数学来解决,他们解决不了,所以我留着这篇文章也是打算之后写篇类似的AI应用的文章。

Tammo Tom Dieck代数拓扑教材

EMS出版的代数拓扑教材Algebraic Topology,作者是Tammo Tom Dieck。本教材相较于Hatcher的书,没有那么太多的插图,并且内容更加抽象。本书知识密度高,内容精炼简洁,没有过多的废话。很适合有一定代数基础,且喜欢直接切入主题,快速学习的人。对于还未入门的小白而言,这本书不太适合作为代数拓扑的入门教材。我高中的时候就在看这本教材,但总在一些地方无法彻底理解。但这本教材吸引我的地方,一是它的内容涵盖面够广,并且知识密度够高,能够让我短时间内掌握代数拓扑方面的基础知识;二是它的描述更加的抽象,并且语句简洁明了、容易理解,很符合我的口味(这也是我当时选择代数几何的原因)。关于本教材与其他代数拓扑教材更具体、更专业的对比,请看Algebraic Topology I: 对教材跟概念的一些论述。PS:作者不再提供附件下载。

望月新一关于abc猜想的天书证明:宇宙际Teichmüller理论

望月新一以及他的Inter-universal Teichmüller Theory(宇宙际Teichmüller理论)可以说是非常出名,相较于费马大定理证明的晦涩难懂,宇宙际Teichmüller理论才算是真正的天书,全世界没几个人能看得懂,就连大佬Faltings都看不懂。望月新一是Faltings的学生,Faltings以“暴力横推”的风格闻名,张寿武说过Faltings的风格就像直接开着推土机把山碾平了过去。并且Faltings看论文都是只看前沿(introduction)就能知道整篇论文的主要定理,甚至还能直接证出来。见望月新一与他天书般的论文,展现了纯数学与我们的距离可见Inter-universal Teichmüller Theory有多难懂,它涉及到代数几何一个高深的领域:远阿贝尔几何(anabelian geometry),顾名思义就是考虑平展基本群$\pi_{1}^{et}(X,x)$远离阿贝尔的部分,远阿贝尔几何源于Grothendick的一封入职信Esquisse d'un Programme,他于其中提出一个宏大的理论,然而最终他却没能将其实现。而望月新一可 ...

Algebraic Topology I: 对教材跟概念的一些论述

关键词:Homotopy, Homology, Groupoid, Foundamental Group, Van Kampen Theorem, Covering Space, Covering Projection, Fibration with unique path lifting, Cofibration.Tammo tom Dieck 在他的代数拓扑教材中写了非常漂亮的前言,在点出代数拓扑精髓的同时还包含一些形而上学的哲思,并且简略地介绍了代数拓扑里面的两个核心词汇,同伦(homotopy) 跟同调 (homology)。我简要地部分翻译如下:代数拓扑是连续数学跟离散数学交相辉映的学科。在连续数学里面,我们用拓扑空间和连续映射这样普遍的形式语言将其公理化。而离散数学则是被我们用来表达代数和组合概念的。在数学语言中,我们用实数来概念化连续形式,但我们建立实数时却是要用到整数。下面举个例子,我们直觉地认为时间是一个连续的没有间断的流动过程,是由一系列不停止的瞬间后继构成的。但在实践中,我们却使用被定义为有周期性的离散模型工具跟自然过程。同样地,我们意识到空间是一个连续体,但我们 ...

怀尔斯的费马大定理证明

费马大定理的证明可以说是算术几何的一个重要里程碑,当年怀尔斯虽然很小的时候就被该问题所吸引,从而选择做一个数学家。但作为一个这么多年都无人能破解的难题,怀尔斯也是兜兜转转,他也没一开始就打算攻克这个猜想。据说,是代数几何取得突破性进展之后,他才觉得是时候攻克费马大定理了。最后他成功证明了谷山-志村猜想,从而证明了费马大定理。可以说怀尔斯能证明费马大定理,是刚好生在一个合适的时代,并站在了巨人的肩膀上,从前人手中接过火炬。怀尔斯关于费马大定理的证明,就是这篇论文Modular elliptic curves and Fermat’s Last Theorem。该论文非常晦涩难懂,没多少人能看得懂,可以说能彻底看懂费马大定理证明的人,都是圈内大佬。论文中涉及的知识面很广,包括椭圆曲线、模形式、伽罗华表示论、代数数论、类域论、群概形等等,想要理解费马大定理就得先理解前面这些理论。不过虽然我们看不懂,但该证明还是非常具有收藏价值的,看不懂也能看,也能欣赏嘛。并且对于做算术几何的人来说,可以用这篇论文来指导自己的学习和研究。Peter Scholze当年不也一上来就看费尔马大定理的证明,虽然un ...

评审8年终获发表,数学天才望月新一证明abc猜想,全球只有十几个数学家读懂但争议未消

abc猜想,数学界悬而未决的重要猜想,它的证明过程经过8年的同行评审,终于要在期刊上发表了。论文作者是日本的天才数学家望月新一,他33岁起就在京都大学担任数学教授。这一次望月新一的证明,全篇超过600页,2012年就已发表,但足足经过了8年的同行评审才通过,期间开过多次研讨会——但依然有很多数学家无法理解。据说,这篇论文全球只有十几位数学家深入研究了证明过程。许多数学家根本无法指出证明过程是对是错,因为根本看不懂。4月3日,日本京都大学召开了新闻发布会,宣布望月新一证明了它。包括Nature等在内的权威科学传媒组织,也这一重要进展进行了报道。望月新一没有出席昨天的发布会,他的另外两位同事说,当他知道自己的论文被接收,终于松了一口气。多年来他从未在公众场合露面。但也不是没有争议,因为当初接收论文的期刊——日本的PRIMS,主编正是望月新一本人。如果他的证明是正确的,那么将彻底改变数论。同时也正因为如此,才有了学界长达8年的争论。什么是abc猜想?abc猜想,最初由法国数学家约瑟夫·奥斯特莱和大卫·马瑟,在1985年提出。并且一经提出,abc猜想就成为数论领域的重要猜想之一。只是和哥德巴赫 ...

望月新一与他天书般的论文,展现了纯数学与我们的距离

导语:一位日本数学家声称已经解决了数学领域最重要的问题之一。但是,几乎无人能懂他的证明,无从判断对错。2012年8月30日的早晨,望月新一悄悄地在自己的网站上发布了4篇论文,总计长达500多页,密密麻麻地布满了各种符号。它们是作者孤独工作了十多年后的成果,可能会在学术界引起爆炸性的影响。在文中,望月新一声称解决了abc猜想——一个27年来在数论领域一直悬而未决的问题,令所有其他数学家都束手无策。如果望月新一的证明是正确的,它将是本世纪最令人震撼的数学成果之一,或将彻底改变整数方程的研究。David Parkins不过,望月新一本人并未对自己的证明大做文章。他任职于日本京都大学数理解析研究所(RIMS),是一位令人尊敬的数学家。他没有向全世界的同行宣布自己的研究成果,只是将论文发布在网上,等待世界去发现。第一个注意到他的论文的可能是玉川安骑男(Akio Tamagawa)——望月新一在RIMS的同事。和其他研究人员一样,玉川安骑男知道望月新一多年来一直在潜心钻研abc猜想,并且已近成功。当天,玉川安骑男通过电子邮件把这个消息发给了他的合作者之一、诺丁汉大学数论理论家Ivan Fesenk ...

分析学大师Elias M. Stein的分析系列教材

分析学大师Elias M. Stein(曾是陶哲轩的老师),写了四本分析学系列教材,统称为普林斯顿分析学讲座(Princeton Lectures in Analysis)。他们分别是:I Fourier Analysis:An Introduction II Complex Analysis III Real Analysis: Measure Theory, Integration, and Hilbert Spaces IV Functional Analysis: Introduction to Further Topics in Analysis当时集齐这四本书花了我不少时间,似乎这四本书知名度不一,我下的第一本是复分析教材Complex Analysis。现在我将这些好东西拿出来分享给有需要的人。PS:如果需要中译版的,目前只能找到《实分析》和《复分析》两本,链接:伊莱亚斯 M. 斯坦恩(Elias M. Stein)《复分析》与《实分析》教材更新:作者不再提供附件下载。