·

古代皇帝的“生理启蒙”老师,在教完皇帝后,她们的结局怎样?

Published at 2024-08-21 17:07:43Viewed 179 times
Please reprint with source link

说起古代的帝王,我们大多数人的第一印象想必都是什么“三宫六院,七十二妃”,或者是拥有至高无上的权力,坐豪车、住豪宅等等。总而言之,皇帝的生活过得是最滋润的,想干什么就干什么!

但其实这是对古代帝王的误解,历史上大多数帝王的工作和生活,实际上并没有我们所想得那样美好。三宫六院、位高权重这些虽然看似很美好,但对于古代帝王来说,很多时候都只是一种负担罢了!

就拿娶老婆这件事儿来说吧,古代帝王家最重要的事情是什么?不是文治武功、也不是什么国计民生,而是传宗接代!

皇帝们的首要任务,就是早生、多生,毕竟对于皇帝来说,江山的传承才是帝国最重要的事情,至于所谓的国计民生,则可以慢慢治理,如果后继无人,那这一切都只是空谈!

但我们都知道,结婚生子是需要到一定年龄的,过早的结婚弊大于利。但皇帝家不一样,他们要的就是能早结就早结。因此在皇子们很小的时候,就要开始接受“生理教育”了,而担任生理启蒙的“女官”(老师),通常是“奶妈”或者是“太监”、当然还有“宫女”。

此外,在宫中还专门开辟得有一个小房间,里面都是一些展示男女之事的“春宫图”,以此来让皇子们能更好的学习两性关系。

其实,这种图也没有什么奇怪的,古人对此也没有什么可以避讳的,很多名家甚至都画过,比如明代画家仇英的《十荣》、唐伯虎的《退食闲宴》、《竞春图卷》、《花阵六奇》等等。

此外,在明代的《禁御秘闻》中还有这样一则记载:

“国初设猫之意,专为子孙长深宫,恐不知人道,误生育继嗣之事,使见猫之牝牡相逐,感发其生机。又有鸽子房,亦此意也。”

其实说白了,这一切就是为了皇子们的生理启蒙教育。

古代皇室中,男性的结婚年龄一般在13岁到16岁之间,比如我们熟悉的康熙皇帝,结婚的时候也才只有14岁。即便他们很多人结婚的时候年龄都很小,但有些皇子在结婚之前,就已经有很丰富的实战经验了,有些甚至已经生儿育女,成为父亲了!

比如北魏文成帝拓跋濬,在14岁的时候就已经有儿子,当爹了,而他的儿子,便是后来北魏的第六位皇帝魏献文帝‘拓跋弘’。试想一下,咱们14岁的时候还在干嘛呢?没错,上初中!

这要是放到现在,那肯定是典型的早婚早育,自然是不能提倡的,毕竟这个年纪还很小,身体各方面发育都不健全,生儿育女必定有损身体健康。毕竟这拓跋濬父子最后去世的时候都还没到三十岁,老皇帝26岁去世,小皇帝23岁去世。

当然了,虽然咱们不能将他们的死因全都归结到这上面来,但总归多少还是有一定影响的吧!

此外,在清朝的时候还规定:在皇帝大婚之前,必须要找8名宫女入宫,让皇帝进行“进御”。其实说白了就是行房的意思。值得一提的是,这8名宫女还有专门的“职位名称”,分别为司长,司仪,司寝,司。

这8名宫女主要的工作,就是对皇帝进行生理启蒙培训,以免大婚之后有损皇家威严。

皇家威严对于古代皇室来说,竟然如此重要,任何事上都要保证这种所谓的威严,着实让人唏嘘。

当然了,以上这种情况,都只局限在皇帝继位时年纪尚小的时候,比如6岁继位的顺治和8岁继位的康熙等。至于其他大部分情况,早在皇帝还是东宫太子的时候就已经完成了。

对于古代皇家来说,什么“生理启蒙”都只不过是他们淫乱的理由而已,实际上很多人并不会只将它局限在“教育”这一层面,等到他们“学有所成”的时候,便会肆意妄为。

基本上,每隔三五天就会换一个,一个比一个漂亮,且风格各异,在他们大多数人心中,只有激情,而没有感情。而那些被宠幸过的妃子,一部分战战兢兢的应对,生怕惨遭杀生之祸;一部分则是另有所图,希望能够借此飞黄腾达,从此走上人生巅峰。

可问题是,一个只有十四五岁的孩子,你说他能清楚什么是责任吗?再说他地位高,有权有势,凭什么就会喜欢你呢?在这些皇子的眼中,这种所谓的“生理启蒙”教育,不过只是一场游戏,一种娱乐消遣的方式罢了。

不过话说回来,历史上也有一些厉害的女人,她们硬是靠着自己的手段和魅力,将皇帝牢牢把握在自己手中。有个别更厉害,她们即便没有为皇帝生下过一儿半女,但依旧牢牢占据皇帝的心。

比如明宪宗朱见深,在他刚被立为太子的时候,孙太后就让自己身边的一个小宫女去服侍他,这是朱见深的第一个女人。再后来,这个小宫女也不知道用了什么方法,硬是让朱见深对她深爱不已。

朱见深当了皇帝后,这个宫女已经三十多岁了,身材也没有当初好,但朱见深依旧很爱她。以至于她在后宫的地位很高,朱见深想要宠幸其他宫女,也都得背着她。而这个小宫女,就是明朝著名的“万贵妃”。

成化二十三年(1487年)春天,万贵妃去世,朱见深闻讯后伤心不已,说道:“万使长去,吾亦安能久矣!”同年9月9日,明宪宗朱见深也在伤感中,怅然离世了,终年41岁。

但其实,除了明宪宗之外,还有隋文帝杨坚,他也非常爱和敬畏自己的妻子独孤皇后,每当他想宠幸别的宫女时,也要背着她去。

综上所述,便是我们全文的内容了。从文中我们不难看出,古代皇帝自诩为上天之子,认为上天赋予他们至高无上的权力,因此他们皇族就可以任意宠幸甚至是奴役女性。

为了满足欲望,他们将很多女性用“铁链”紧锁在后宫之中,至于她们究竟有多少人,都叫什么名字,有多少怀孕了,都不是他们关注的重点。当然,他们也未必都会记得。

而为了防止所谓的“皇族血脉”外流和遗失,他们又不得不在生理问题上加强教育和管理,即便这种管理充满了无耻和荒唐。总而言之,在封建社会体制之下,这种极为不公平的两性关系,着实让人难以接受!

0 人喜欢

Comments

There is no comment, let's add the first one.

弦圈热门内容

学习成绩差是一种罪吗?

知乎提问:学习成绩差是一种罪吗?我的回答(已删):能问出这种问题,证明如今社会上很多人被这种唯分数论洗脑的太严重了。学习成绩差怎么了,得罪谁了?学习成绩差本身没啥大不了的,但在zg的教育体制下,却有学习成绩差=坏孩子这种荒谬的事情。就好像在如今社会躺平就会被骂懒惰、不进取,被披上各种不友好的标签。这些都只不过是资本主义社会的产物,因为你懒惰不工作,就不能使资本发生增值,然后资本家就会跳出来给人们洗脑说这样做是不对的。况且学习成绩也跟一个人的实力没必然关系。就数学而言,数学成绩多少跟你数学的研究水平没有半毛钱关系。今年的fields奖得主Hub据说连Gre考试都做不完卷子,反应很慢,学习成绩很差,但这不影响他拿fields奖。本来考试这东西就是在有限的时间内考你教材里的内容,跟创新能力啥没有一点关系。原文发布于 2022-10-21 22:152022年当时应该大二吧,当时的菲尔兹奖得主对我还是挺鼓舞的,可以说是进一步鼓舞了我。之前我一直拿Witten、Bott等半路出家人的事例鼓舞自己,因为我就一普通得不能再普通的学生,在社会上毫无任何优势,唯一的优势或许就是早了解了那么点数学吧。

求证:关于菲尔兹奖得主舒尔茨的这个非常特殊的说法,是否属实?

知乎提问:这是我在一篇自媒体文章里看到的关于舒尔茨的学习、科研方式的说法:令人非常吃惊的是,舒尔茨对代数几何产生兴趣竟然是因为看了怀尔斯关于费马大定理的证明。与常人不同的是,舒尔茨几乎不会花时间去学基础知识,比如线性代数,抽象代数这种,他都是直接去看一些论文,当遇到一些不懂的问题时,才会去查阅相关资料,并且他还可以立即学会这些知识,例如他通过研究费马大定理的证明,学会了模形式和椭圆曲线的相关知识。这个说法和我以前理解的学习、科研方式大相径庭,所以我觉得有必要来求证一下是否属实。谢谢!我的回答(已删):你看到的这个中文翻译的采访非常有问题,严重歪曲了Peter Scholze的真实情况。首先这个采访原文的地址是The Oracle of Arithmetic | Quanta Magazine。原文中说到Peter Scholze中学的时候得知Wiles证明了费马大定理,因此去看费马大定理的证明,结果是understood nothing!At 16, Scholze learned that a decade earlier Andrew Wiles had proved the fa ...

读基础数学如何解决经济问题?

知乎提问:读基础数学如何解决经济问题?我的回答(已删):读基础数学还想着赚钱干嘛,想赚钱就别读纯数了。因为如果想赚钱,这难度系数指数级上升,你做纯数可能做得已经很不错了还不如那些IT行业人士赚个月入过万。因此,如果你想靠纯数赚钱,你会觉得很不公平,而且在这浮躁的社会环境里,你怀着这种心态也很难沉得下心来做研究。对于经济问题,正如刘宇航前辈所说,降低需求是最好的办法。原文发布于 2021-05-24 19:06下面引用一下lyh的回答,话说我以前刚开始学数学的时候,知乎还是挺多数学大佬的,这种是真的专业的,不像现在一些数学大v压根没啥数学水平。目前来看,绝大多数数学大v都退乎了,有不少还注销账号了,回答一个也没留下来。lyh算是少数几个还坚持在知乎发言,并且还是持续性更新的,别的哪怕还留在知乎基本也很少发言了。

怎么学好代数结构?

知乎提问:怎么学好代数结构?我的回答(已删):其实抽象代数确实不太好学,抽象代数顾名思义很抽象。我刚开始学抽象代数的时候,也啃得非常吃力。对此,我建议先坚持学下去,不要停,实在不懂的话先跳过,因为后面的内容说不定能帮助你前面内容的理解。在学习的过程中,多积累一些trivial的例子,不需要太复杂的例子。学习是一个积累的过程,尤其是数学,不应心态过于急躁,对于自己弄不懂的概念要多次仔细揣摩,第一次不行就隔段时间再来一次,多学几遍是没有错的,同时可以尝试看多几本抽象代数的书,看看是不是因为不适合自己口味所以觉得很吃力,找到一本最合自己胃口的书。我个人觉得吧,抽象代数其实也只是非常基础的课程,只要有足够的时间,坚持下去,总能弄懂学会的。加油!原文发布于 2020-08-15 22:492020年8月,应该是高三高考完的那段时间,那个时间也是我数学水平、数学知识飞速提升的时间段,但我也遇到了更多的挑战。大一的时候,我一边想做望月新一的远阿贝尔几何,一边也想做Peter Scholze的算术几何。最后在导师的建议下,我选择了专注做Peter Scholze的算术几何。这个时间段,导师对我来说还是 ...

数学中的「分析」是什么意思?

知乎提问:数学中许多分支名字中带有「分析」二字,如数学分析、实分析、复分析、泛函分析、调和分析、数值分析……牠们的共同点是什么(也就是,「分析」二字是什么意思)?我的回答(原文已删):我感觉分析有研究某个数学对象局部性质的意思。比如说,几何分析就是通过PDE将流形上的局部性质跟整体的拓扑性质联系起来。又比如说,任意形式的波都可以分解成傅立叶级数的形式。这些都是研究局部性质的例子吧。我不是做分析的,这只是我的粗浅理解。。原文发布于 2021-05-24 18:48我看回知乎曾经的回答,我发现2021年前的时间,回答都普遍比较简单。2021年,那时候我应该刚读大一吧,没怎么写过notes,更别提后面写多篇论文了,因此写作能力一般,也懒得长篇大论。

想做朗兰兹纲领方向,请问如何安排学习进度?

知乎提问:最近对朗兰兹纲领感兴趣,主要是向往大一统的理论,但因为这个领域很庞大,不知道从哪里入手,希望能提供学习顺序,推荐一些书目,越详细越好。另外,想知道哪些院校这方面做的比较好我的回答(已删):我并不是做Langlands programs方向的,但是也对其有所兴趣,因为算术几何跟Langlands programs也有所联系。个人觉得可以从Shimura varieties作为学习的切入点,具体的references可以看Milne的note,直接百度就有了。同时,可以看看欧阳毅的Galois representation,Scholze关于local Langlands的文章,还有Harris和Taylor的The Geometry and Cohomology of Some Simple Shimura Varieties。在看的过程中,看不懂就往下补知识,并且不要忘记了解相应知识的诞生背景,这样做效率是最高的。不过,这些东西都特别难读,反正我也很多看不懂,还是找个该方向的专家带最好。原文编辑于 2022-05-02 22:30原文评论区Milne的course notes ...

初二可以学习抽象代数吗?

知乎提问:孩子初二,数学成绩经常满分(120)。有时候117 118,孩子说想学点高端的,我想让孩子学抽象代数可行吗我的回答(已删):没必要学,这么着急学这些内容干什么呢,孩子又不一定真的感兴趣,搞不好让他讨厌起了数学更糟糕。数学是以兴趣为主的,什么提前学之类的都是渣渣,提前学又不代表你以后数学成就会很高。初二既然数学成绩还行,那就意味着孩子有更多的空余时间可以做他感兴趣的事情,家长不应该强行给孩子灌输一些不应该在他这个年龄学习的东西。除非你孩子真的很热爱数学,那么你拦都拦不住他自学,还需要你去灌输给他吗?原文发布于 2021-05-28 09:25

你是如何对数学产生兴趣的?

知乎提问:短暂的兴趣也行,有长期的更好。请大家积极分享哦我的回答(已删):我以前是因为物理喜欢数学的,当时特别崇拜Einstein,想要以后做理论物理学。因为Einstein当年也是自学微积分的,于是我也入坑微积分。刚开始,觉得特别难学,无数次想要放弃,但是最后都克服掉了这些困难,学习不少微积分的基础内容,开始感受到数学的美妙。刚开始我在学微积分的同时,还会学一些物理的东西。可是后来,我每次打算学物理最后都会被学数学取而代之,我开始对数学越来越无法自拔,以至于牺牲学习物理的时间。就这样,我就改变了曾经理论物理的方向,转为数学。再后来,我对数学的喜爱远远超过物理了,同时高考备考紧张,我干脆放弃学习物理,全身心投入到数学当中。原文发布于 2021-12-20 20:10

学数学的目的是什么?能给我带来什么?

知乎提问:学数学的目的是什么?能给我带来什么?我的回答:这个问题有点难以用语言来回答。数学带给了我的东西实在太多了,从童年开始到如今,我整个人看待世界的方式,我的三观,我的方方面面早就被数学所改变,并且与数学难以隔离。如果硬要展开来说,我能想到以下几点:首先就是审美,这种审美是指一种抽象意义上的审美,不是简单的说眼睛看到什么觉得很美。这种审美是你个人数学风格、数学品味、数学思想里最根本的东西,几乎会影响你关于数学的一切。你写下的定义、命题、定理“美不美”,你觉得某个理论“美不美”,这些都跟你的审美有关。其次数学给了我夹杂着理性的感性,我经常一边看数学,一边听音乐,这样能让我沉浸在一个独特的精神世界。呆在这个世界里,思绪会变得清晰,情感也会变得起伏,这个时候往往灵感迸发,很多原来想不懂的东西突然就想懂了。用心理学的说法解释,就是数学带给我体验超心流状态(不是心流)。最后数学还带给我理性思维、更加缜密的逻辑等等,这些其他回答也反复提过,就不说了。

怎样才能培养数学兴趣?

知乎提问:怎样才能培养数学兴趣?我的回答:想要培养数学兴趣很简单,首先你肯定要对数学有好感,如果连这点基础都没有估计也很难对数学感兴趣。然后你只需要不断的了解数学、接触数学,形成一个了解数学=>进一步深入了解数学这样的一个循环,自然而然就会对数学感兴趣。具体的讲,你可以做的包括以下几条,可以根据自己的兴趣进行调整:多读数学相关的介绍文章,或者数学方面的一些资讯报道,从浅层了解数学。多读数学家相关的传记,数学家留下的话、数学家分享的经验等等,这里的数学家不仅仅包括过去杰出的数学家,还需要包括如今在世的数学家。多读不同数学领域相关的教材,多方涉猎,加深对数学各个领域的初步理解。这个做法是最能培养数学兴趣和数学品味的。上面两种方式只是辅助第三种方法,毕竟想要了解数学,培养对数学的喜爱,最直接也是最有效的方法,无疑是直接关注数学本身,直接学起来、思考起来。以上三条主要针对初学者,当你不那么初学之后,就不要目光放得太高了。我曾经有段时间就是因为看得太多名人名家的内容,反而开始看不起那些没那么杰出的人,这完全就是愚蠢的想法!多关注身边同样喜欢数学的人或同行,多交流了解对方的想法和经验,这样对 ...