·

乘坐超光速飞船,来到距离地球2241光年的位置,能否看到秦始皇登基?

Published at 2024-08-15 18:36:25Viewed 198 times
Please reprint with source link

在各方面条件均合适的前提下,理论上来说是有一定概率看到秦始皇登基的。

在咱们上中学的时候,可能我们的物理老师就给我们讲过非常有趣的现象:夏天打雷下雨,往往在打雷之前会有一串闪电滑向天空,闪电过后就是雷声,对不对?那么我们为什么会先看到闪电,然后再听到雷声呢?

再听到雷声呢原因很简单,因为闪电属于光,它的传递速度是光速。而雷属于声音,它的传播速度是声速。一个是30万公里每秒,一个是340米每秒。从这个理论来出发的话,我们就不能发现,在闪电打雷的过程当中,我们往往是最先看到闪电,然后才能听到打雷的声音。

好的,在这样一个理论前提之下,我们会就更容易来理解这个话题了,简而言之:光和闪电本质上来说没有太大的区别,它们都是光的一种形式,而它们在传播的过程当中往往和周边的环境介质都有着密切联系。

但是我们把这些通通排除在外的话,当一束光飘向外太空的过程当中,在最短的时间之内,它可能到达一个极远值。但是如果想把这个光传递得更远,这中间就需要时间了,而这个时间我们是以光年来衡量的。这个光年指的是什么呢?常规情况下来说,指的是光在一年内传播的距离。

拿地球和太阳当一个引子

太阳每天东升西落,我们早已经习惯了这样的一个作息。那么下雨、阴天的时候我们看不到太阳,天空当中万里无云的时候我们能够看到太阳。但是我们看到的太阳就是太阳吗?并不是这个样子,这样一讲可能有那么一点点哲学的理念了,实则不然。准确的来说我们看到的太阳不是太阳,最起码不是现在的太阳。

因为太阳和地球之间的距离太远了,所以太阳发出来的光在最短的时间之内根本无法传递到地球。那么这个最短时间一旦突破到怎样的一个极限值,我们就能够模糊的认定为现在看到的太阳就是现在的太阳呢?答案是8分20秒,换句话来说太阳光从太阳表面射到地球的时候,总时长约在8分20秒左右。

而在整个太阳系当作一个宏观的大背景的前提之下,太阳光从太阳本身传递到太阳系的。最远的时间是4.15小时,也就是说太阳发出来的光传递到任意行星,理论上来说是不会超过4.15小时的。但有一个前提,那就是太空中,任何东西都不能阻挡太阳光线的前提下。

这里所说的4.15小时常规指的就是海王星,太阳光射到海王星上,总共的时长是需要4.15小时。

这就发生了一件非常有趣的事情,海王星当下阶段看到的太阳光,其实并不是太阳本身发出来的光,而是太阳在4.15小时以前发出来的光。人类在地球上看到太阳发出来的光,也不是太阳本身发出来的光,而是在8分20秒之前太阳发出来的光。

2241光年意味着什么?

紧随其后,我们需要明白,如果我们想看秦始皇登基的那一个阶段的视频,那么我们就只能穿越到对等光年以外来看地球。这个时候太阳就不再是我们刚才所探讨的核心了,地球反而是我们探讨的核心。

那么秦始皇在公元前21年登基的,我们通过准确的日期计算,大约在2241光年之前能够看到秦始皇登基的影像,但是这有一个前提,那就是这个时间是否精确?因为我们每往前走一段时间,以光年的速度往前走,所能够看到地球上的表面状态就可能会发生诸多变化。

所以这个具体的日期咱们不做过多预估,也不去做过多评判,我们只是拿一个预估值,也就是说差不多在这一段时间里面秦始皇能够登基,而距离地球2241光年之外,这个时间节点刚刚好,接下来我们来分析一下技术方面是否可行。

问题一:光线的本身问题。

好的,我们继续来讲:如果我们手中拿着一个小型的激光灯,这个激光灯大家小的时候可能都玩过,一两块钱一个。小灯里面有三个电池,那我们当拿着这一个小灯穿过一个玻璃照在一个镜面上的时候,就会发现本身所在的影像可能会模糊一点。

那么如果我们在中间穿插上5个玻璃呢,这样的话一个激光灯的光照射到玻璃外面然后折射出来的影像可能就会更模糊一些。那如果我们假设拿着一个激光灯,中间穿插上100万个镜子,然后在镜子的旁边是另一堵墙,那么我们还能够把这一束光传递出去吗?

答案是显而易见的,肯定传递不过去了,因为一个玻璃有那么一点点的污垢,那么100万个玻璃,它所来的污垢可能就如同一堵墙一样,直接把光给砍掉了。在宇宙的运转过程当中,理论上来说也有可能存在这种情况。

原因也很简单,宇宙当中虽然是真空,但仍然存在光线的衰减,折射衍射等等。因为宇宙并不是纯粹的绝对意义上的真空,也有可能因为某个大爆炸直接导致几个行星变成粉剂,也有可能几个行星形成的陨石坑接连不断地干扰着我们的光线。所以我们找到一个绝对意义上来说纯粹的真空状态是非常困难的一件事情。

好的,我们针对于这一个困难做出一个假设,大家也都知道宇宙的范围是无限大的,而宇宙里面的东西其实是相对较少的,在地球和月亮的中间就可以把银河系当中的大部分行星都给安排进来。

所以我们也不难发现:宇宙当中如果想找到一个绝对意义上空间方面没有任何污染的或者相对来说差不多凑合的一个真空状态,难度虽然很大。但万一我们找到之后,我们能看到秦始皇登基的影响吗?

难度二:是否有不可透视物的干扰?

接下来我们再做一个构想,如果我们拿出一个手电,然后突然之间把手电打开,在另一栋楼里面,我们安排一个小伙伴来记录我们这个手电是什么时候开的,可能时间间隔也就是零点零零几微秒而已。

那么我们把这两栋楼无限度地延长,无限度地拉大,这两栋楼之间的距离有多远呢?答案是一光年。这两栋楼之间没有任何物质,那么处于真空状态之下,其中一个人摁了一下手电筒开了,另一个人他需要多长时间能够看到这束光呢?答案是一年,对不对?

可是如果这个开手电的人并不是把手电筒的光对着窗户,反而是扭转身子把手电筒的光对着自己背后的那堵墙,而这堵墙因为不可视的原因就导致光传播不出去。而另一栋楼里面的那个小伙伴他还能够看到这束光吗?不要说一年了,哪怕就是10年8年也看不到这束光,对不对?

所以这就存在着另一个问题,秦始皇的登机究竟是以怎样的形式登记的?如果角度选不好,角度选不对,或者秦始皇登基的时候就是在一个密闭的屋子里面,那么我们如何能够看到这个影像呢?还需要打一个折扣。

整体来说,如果我们运作到2241光年之外,并且通过这样一种方式来看秦始皇登基,它的可操作难度可见一斑。当然如果当作一个幻想或者当作一个梦想来打趣一下,或者来假想一下本身问题不大,但实际操作起来估计是得不偿失或者压根不可能实现的事情。

0 人喜欢

Comments

There is no comment, let's add the first one.

弦圈热门内容

怎样才能培养数学兴趣?

知乎提问:怎样才能培养数学兴趣?我的回答:想要培养数学兴趣很简单,首先你肯定要对数学有好感,如果连这点基础都没有估计也很难对数学感兴趣。然后你只需要不断的了解数学、接触数学,形成一个了解数学=>进一步深入了解数学这样的一个循环,自然而然就会对数学感兴趣。具体的讲,你可以做的包括以下几条,可以根据自己的兴趣进行调整:多读数学相关的介绍文章,或者数学方面的一些资讯报道,从浅层了解数学。多读数学家相关的传记,数学家留下的话、数学家分享的经验等等,这里的数学家不仅仅包括过去杰出的数学家,还需要包括如今在世的数学家。多读不同数学领域相关的教材,多方涉猎,加深对数学各个领域的初步理解。这个做法是最能培养数学兴趣和数学品味的。上面两种方式只是辅助第三种方法,毕竟想要了解数学,培养对数学的喜爱,最直接也是最有效的方法,无疑是直接关注数学本身,直接学起来、思考起来。以上三条主要针对初学者,当你不那么初学之后,就不要目光放得太高了。我曾经有段时间就是因为看得太多名人名家的内容,反而开始看不起那些没那么杰出的人,这完全就是愚蠢的想法!多关注身边同样喜欢数学的人或同行,多交流了解对方的想法和经验,这样对 ...

大一上挂科后果严重吗?

知乎提问:大一上挂科后果严重吗?我的回答:还真问题不大,我大一的时候身边就有不少同学挂科了,结果无非是补考,或者严重点的重修,最后都能过。我大一大二的时候也是对挂科害怕不已,每次考前复习都十分紧张。直到后来快毕业的时候,我得知自己居然缺了通识课学分不能发毕业证,而我身边那些挂过科的同学全都学分修够了。那时候我才明白没啥好怕的。。。当然最后那个学分还是补上了,虚惊一场。后面我打算在 数学故事天地 写一篇因为沉迷数学导致挂科而大学无法毕业的小说,虽然我文笔不行,但是我有足够的想象力,只要我把逻辑、故事线、设定全写出来,一样会是丰富的故事内容,只不过细节描写没那么动人、生动。希尔伯特也曾经说过,数学家拥有足够丰富的想象力,完全可以当一个作家。原话我现在在网上已经找不着了,只找到了下面这句话"You know, for a mathematician, he did not have enough imagination. But he has become a poet and now he is fine."  ——David Hilbert“他曾没有足够的想象力来当数学家。不过 ...

洛必达法则为何成为禁术?

知乎提问:如题,高考用会扣分,大学微积分考试还明令禁止使用洛必达法则(我个人还是好喜欢洛必达法则)疑惑产生于大一半期考试之前,刚刚学极限没多久的时候。为了让学生更好地理解“极限”这个概念,学校用心良苦,在半期考试中ban了洛必达,仅此而已。我的回答:因为洛必达法则并不是洛必达发现的,而是洛必达买下来的😇。说到洛必达法则,我的回忆就倒回到初三和高中时期,当时做高等数学的极限题我都喜欢直接洛必达法则,我不太想考虑除了洛必达还有什么别的计算方法,没必要。因为洛必达法则明显更加友好,反而更加容易让学生熟练掌握极限,我初三乃至高中的时候,学高等数学能学懂,其中就少不了洛必达法则的功劳。其实多用几次洛必达法则感觉上来了,再去理解极限的本质,也不是不可以。只能说国内的这种教育模式非常的按部就班,就必须你按照学校指定的路径来学习,真的就流水线工厂一样,教育被整成这样,教育出来的人自然也很难有创新思维。这只是普通的通过性考试,完全没必要考虑所谓的公平性问题。就好比,初三的时候自学了高中的正弦定理、余弦定理,或者,高三的时候自学了洛必达法则、级数等微积分的东西,可以很轻松的解决某些题目。这种还勉强能狡辩一 ...

今天晚上弦圈服务器发生崩溃情况,已一切正常莫慌,目前判断是腾讯云的问题

之前我对弦圈进行了优化最近有人反馈网站卡、打不开,我自己也试过这种情况,已再次对弦圈进行优化,接着弦圈基本上就没有再出现过问题,网站浏览也很流畅。不过今天晚上前端服务器突然崩了,我发现后马上对服务器进行了重启,重启过程持续了5-10分钟左右吧,真慢。然后又发现了一点问题,就暂时用后端服务器顶替了,之后前端弄好了又重新用回原来的服务器。在这个过程中因为重启了(edge one)CDN,导致https访问会弹出证书不安全的情况,现在也全部正常了。根据我跟其他人的交流得知,他在东京的服务器前几天也突然崩了,崩的原因也是摸不着头脑的IO读写,然后我咨询客服他也没看到异常。我就一个前端服务器,2核4G就放前端代码,怎么可能会是业务问题。然后网站被黑客疯狂扫描,一直都有但也不至于弄崩服务器,目前判断可能是腾讯云自己的问题。

GTM023 W.H.Greub线性代数经典教材:Linear Algebra

这本教材是我高中时期入门线性代数的主要教材,我的很多基础知识都来源于这本书,如今看回这本书可以说满满的回忆。这本书可以说,是我读过的内容最为全面且完备的线性代数教材了。而且它的语言风格非常的代数化,没有什么直观可言,以抽象为主,表述简练、知识密度高。总之,真的太对我的胃口了,我当时是挺喜欢看这本书。这本教材跟其他线性代数教材一样,先从最基本的向量空间开始讲起,但不同的是,它这里还应用了群论的知识。紧接着这本书以代数抽象的形式讲矩阵和行列式,尤其是行列式,书中的描述直达其代数本质,这是我当时印象挺深刻的。接着书本还继续往外拓展,讲到与向量空间相关的一些概念,如泛函分析中的内积空间,同调代数中的代数和同调。总之,这本书对初学者有一点小门槛,适合喜欢挑战难度、喜欢看高水平读物的初学者看。PS:作者不再提供附件下载。

QQ频道AI视频泛滥?未来互联网上会充斥着AI生成的垃圾视频吗?

QQ这段时间感觉AI视频比以前多了,而且更主要是现在QQ还给AI视频推流了,可以说举措完全跟其他平台不同。以往QQ上的AI视频,基本上都是没流量的,现在给流量扶持,势必会导致AI视频进一步泛滥。其他平台像知乎、公众号、推特,发AI生成的内容,其实是会直接限流的。昨天我在知乎上发一篇AI生成的小说,创作声明了AI写的,结果直接零流量,阅读量1应该就是我自己吧。而在推特上发东西,如果用Gemini修改你自己写的语句,发上去也会被限流。小红书我没试过,之前看那种AI美女的笔记也挺泛滥的,不过后来我举报过以后就基本没看到了,也不知道是不是算法问题,还是小红书算法更新了。总之,小红书也是不鼓励AI生成的。说实话就没几个平台真的会鼓励AI生成的内容,只有极少数幸运儿会得到流量,毕竟说实话绝大多数AI内容都惨不忍睹,我其中最讨厌的就是那种AI美女图片,现在还多了视频,真的恶心,关键是居然还有人会看?尤其是QQ视频,之前还不给AI内容推流,现在直接开始推流了,更加惨不忍睹,关键是还不少人评论互动。如果是我,肯定直接不点,流量都懒得给它。AI视频如果仅仅只是整活那种,那还勉强能接受,但是我更喜欢那种混剪 ...

我开发的宇宙级APP竟然成为了其他世界的系统

陈木是弦圈一名默默无闻的全栈程序员,他每天身兼多职,任劳任怨地工作,既负责网站前端的开发与维护,又得兼顾后端的开发与维护。前段时间,陈木又接到了新的任务,要求他负责弦圈APP相关的开发工作 计划开发弦圈的桌面端版和APP版。于是,陈木在挑选了众多技术与框架后,选择了使用Universal React Native Pro Max进行APP的开发,这是一个近期在全世界都很火的框架。Universal React Native是基于传统的React Native通过最新的universal技术[1]进一步迭代升级,从而能达到用React Native语言开发任何东西原生的一个技术框架,而Pro Max则是它的超级升级版,你甚至能用它编程纳米机器人和可控核聚变引擎。开发的日子时间总是过得飞快,眨眼间就过了几万年,陈木头发都秃了,才终于从工作中缓过来。这时陈木也收到放假的通知 弦圈APP先开发到这里......,他松了口气,终于可以放松一下,并开始着手考虑自己一直以来的设想——开发一个宇宙级APP。所谓的宇宙级APP数亿年以来,一直都是各大星域争相竞争的研究对象,指的是通过开发宇宙级API接口 ...