·

共青团工作要点

Published at 2025-01-22 11:48:44Viewed 131 times
团务重点
Please reprint with source link

一、政治建设:

思想政治引领:注重加强团员政治教育和青年思想政治引领,以习近平新时代中国特色社会主义思想为指引,深入学习习近平总书记关于青年工作的重要思想,坚持党建带团建,扎实开展团员和青年主题教育,深入学习党的二十大精神和团十九大精神,有针对性开展“青年大学习”教育培训。

战略文化传导:结合集团战略和本单位觉政工作重点,依托青年论坛,组建青年讲师团,教育引导广大团员青年传承弘扬集团自身优良传统、红色精神,加强宣讲,积极传播企业文化理念。

舆论宣传工作:田青工作有宣传阵地、有宣传队伍,持续加强宣传平台建设,团青活动开展丰富多彩的宣传工作。

二、作用发挥

国绕中心、服务大局:常态化开展青年籍神素养提升工程、主题实践活动,引领团员青年在安全生产防范风险、深化改革等领域发挥生力军与突击队作用,保障生产、运行、服务、创新等方面工作平稳有序。

青年文明号活动:国绕持续打造世界一流产品服务水平,推进青年文明号创建,积极组织青年文明号开放周主题实践话动,创建活动特色鲜明,创建工作有制度、有记录、有成效,加强对往届青年文明号监督工作。

青年志愿者活动:以青春之力服务-国之大者”,开展形式多样的志愿者活动及社会公益活动,组织动员青年参与支援一线生产、服务保障亚远会和亚残运会、生态环境整治等,积极履行社会责

培树典型:持续开展先进评优,善于发现和培树优秀青年集体和个人,有效发挥先进典型的示范引领作用,营造“创先进、争模范-的浓厚氛固。

创新创效:组织团员青年参与“五小创新活动 (小发明、小创造、小革新、小设计、小建议),结合实际开展创新竞赛,,善于将优秀创新成果灵活运用于公司生产运行、业务管理等环节,为公司减亏脱因注入青春动能。

三、联系服务

助力成长成才:深入推动青春助力计划,通过开展岗位交流、培训学习、工作锻炼等活动,挖掘和培养青年人才,搭建青年人才人员信息库,助力团员青年成长成才。

关心关爱青年:常态化开展我为青年办实事活动,积极了解、看力解决青年员工~急难愁盼-问题,主动关爱基层一线青年、异地工作青年、艰苦岗位青年、新入职员工、家庭困难青年、兼职团千部、“队号手岗赛骨千青年的工作生活、心理状态,开展中秋国庆双节慰问、单身青年联谊、送温暖、送清凉等活动。

开展文化活动:结合实际开展读书社团、户外运动、文创产品设计制作等文化活动,帮助青年员工缓解身心压力、养成健康心态,丰富业余生活。

四、组织建设

班子建设:投期换届,班子配备齐整,政治强、业务精、作风买,管理严格。

支部建设:组织建设规范、团情底数清晰,-三会两制一课-和主题团日等组织生活规范落实,团员教育管理经常,青年之家"等阵地作用发挥较好。

制度建设:落实相关要求,建设和完善团内制度体系,严格团内重大事项请示报告,团组织经费有保障,团费收缴正常,团员统计按时完成。

团干部队伍建设:发展和吸收优秀青年骨干加入团干部队伍,认真组织开展团千部培训,团干部队伍整体履职较好。

0 人喜欢

Comments

There is no comment, let's add the first one.

弦圈热门内容

把加法与乘法结构拆掉再复原?望月新一如何引发代数几何变革

据《朝日新闻》,望月新一关于ABC猜想的论文可能将要发表,审核它的期刊是《数理解析研究所公刊》(PRIMS)。媒体对此的报道大抵聚焦在两点上:一是这个期刊就是他的工作单位主办的,一是这个论文几乎无人能懂。作为一个数学研究者,我个人并不担心望月新一的利益冲突问题,不但因为数学界有一套相当完备的系统用以避免利益冲突,在选定编辑和审稿人时有良好的避嫌标准,更重要的是:他没有动机。他已经功成名就,不需要什么文章。数学这种东西,对就对,错就错,不存在编数据或者实验造假,一切细节都在文章里。要是错了,无论强行发表在什么期刊上,也终有一天会被发现,而一发现就无可抵赖,只能重新修补。但是他的理论绝不仅仅是一个“几乎无人能懂”的怪物而已。它所试图解决的根本数学问题,它背后的当代数学界的面貌,它反映出的做数学研究是怎样的状态,这里面还有太多的故事并不是、也不应该是只有几个人能懂。甚至也许可以说,这些故事能让人直观地感受到:现代数学是什么。破题望月新一的研究领域,是所谓的“远阿贝尔几何学”。如果一句话解释这个领域的话,我只能这样写:有理数的绝对伽罗华群,以至任意代数簇的平展基本群,它们“远离阿贝尔”的部分, ...

将反向传递看成函子:强化学习的一个复合视角

这篇文章是数学家与计算机科学家合作写的,将范畴论应用于人工智能的强化学习。本文表示,强化学习算法与强化学习算法的复合,还是一个强化学习算法,因而所有强化学习算法构成一个范畴$\textrm{Learn}$。然后在$\textrm{Learn}$里考虑神经网络,并证明在一般情况下,梯度下降也是复合的。如果对纯数学理论,在计算机或者AI有什么应用感兴趣的人,可以看看。我当时下这篇文章,也是好奇代数领域在AI方面有啥应用,其实当时已经知道有个叫热带几何(Tropical Geometry)的领域,就是代数几何在计算机的应用。因为当时AI就很火,但AI可解释性需要很多数学来解决,他们解决不了,所以我留着这篇文章也是打算之后写篇类似的AI应用的文章。

Tammo Tom Dieck代数拓扑教材

EMS出版的代数拓扑教材Algebraic Topology,作者是Tammo Tom Dieck。本教材相较于Hatcher的书,没有那么太多的插图,并且内容更加抽象。本书知识密度高,内容精炼简洁,没有过多的废话。很适合有一定代数基础,且喜欢直接切入主题,快速学习的人。对于还未入门的小白而言,这本书不太适合作为代数拓扑的入门教材。我高中的时候就在看这本教材,但总在一些地方无法彻底理解。但这本教材吸引我的地方,一是它的内容涵盖面够广,并且知识密度够高,能够让我短时间内掌握代数拓扑方面的基础知识;二是它的描述更加的抽象,并且语句简洁明了、容易理解,很符合我的口味(这也是我当时选择代数几何的原因)。关于本教材与其他代数拓扑教材更具体、更专业的对比,请看Algebraic Topology I: 对教材跟概念的一些论述。PS:作者不再提供附件下载。

望月新一关于abc猜想的天书证明:宇宙际Teichmüller理论

望月新一以及他的Inter-universal Teichmüller Theory(宇宙际Teichmüller理论)可以说是非常出名,相较于费马大定理证明的晦涩难懂,宇宙际Teichmüller理论才算是真正的天书,全世界没几个人能看得懂,就连大佬Faltings都看不懂。望月新一是Faltings的学生,Faltings以“暴力横推”的风格闻名,张寿武说过Faltings的风格就像直接开着推土机把山碾平了过去。并且Faltings看论文都是只看前沿(introduction)就能知道整篇论文的主要定理,甚至还能直接证出来。见望月新一与他天书般的论文,展现了纯数学与我们的距离可见Inter-universal Teichmüller Theory有多难懂,它涉及到代数几何一个高深的领域:远阿贝尔几何(anabelian geometry),顾名思义就是考虑平展基本群$\pi_{1}^{et}(X,x)$远离阿贝尔的部分,远阿贝尔几何源于Grothendick的一封入职信Esquisse d'un Programme,他于其中提出一个宏大的理论,然而最终他却没能将其实现。而望月新一可 ...

Algebraic Topology I: 对教材跟概念的一些论述

关键词:Homotopy, Homology, Groupoid, Foundamental Group, Van Kampen Theorem, Covering Space, Covering Projection, Fibration with unique path lifting, Cofibration.Tammo tom Dieck 在他的代数拓扑教材中写了非常漂亮的前言,在点出代数拓扑精髓的同时还包含一些形而上学的哲思,并且简略地介绍了代数拓扑里面的两个核心词汇,同伦(homotopy) 跟同调 (homology)。我简要地部分翻译如下:代数拓扑是连续数学跟离散数学交相辉映的学科。在连续数学里面,我们用拓扑空间和连续映射这样普遍的形式语言将其公理化。而离散数学则是被我们用来表达代数和组合概念的。在数学语言中,我们用实数来概念化连续形式,但我们建立实数时却是要用到整数。下面举个例子,我们直觉地认为时间是一个连续的没有间断的流动过程,是由一系列不停止的瞬间后继构成的。但在实践中,我们却使用被定义为有周期性的离散模型工具跟自然过程。同样地,我们意识到空间是一个连续体,但我们 ...

怀尔斯的费马大定理证明

费马大定理的证明可以说是算术几何的一个重要里程碑,当年怀尔斯虽然很小的时候就被该问题所吸引,从而选择做一个数学家。但作为一个这么多年都无人能破解的难题,怀尔斯也是兜兜转转,他也没一开始就打算攻克这个猜想。据说,是代数几何取得突破性进展之后,他才觉得是时候攻克费马大定理了。最后他成功证明了谷山-志村猜想,从而证明了费马大定理。可以说怀尔斯能证明费马大定理,是刚好生在一个合适的时代,并站在了巨人的肩膀上,从前人手中接过火炬。怀尔斯关于费马大定理的证明,就是这篇论文Modular elliptic curves and Fermat’s Last Theorem。该论文非常晦涩难懂,没多少人能看得懂,可以说能彻底看懂费马大定理证明的人,都是圈内大佬。论文中涉及的知识面很广,包括椭圆曲线、模形式、伽罗华表示论、代数数论、类域论、群概形等等,想要理解费马大定理就得先理解前面这些理论。不过虽然我们看不懂,但该证明还是非常具有收藏价值的,看不懂也能看,也能欣赏嘛。并且对于做算术几何的人来说,可以用这篇论文来指导自己的学习和研究。Peter Scholze当年不也一上来就看费尔马大定理的证明,虽然un ...

评审8年终获发表,数学天才望月新一证明abc猜想,全球只有十几个数学家读懂但争议未消

abc猜想,数学界悬而未决的重要猜想,它的证明过程经过8年的同行评审,终于要在期刊上发表了。论文作者是日本的天才数学家望月新一,他33岁起就在京都大学担任数学教授。这一次望月新一的证明,全篇超过600页,2012年就已发表,但足足经过了8年的同行评审才通过,期间开过多次研讨会——但依然有很多数学家无法理解。据说,这篇论文全球只有十几位数学家深入研究了证明过程。许多数学家根本无法指出证明过程是对是错,因为根本看不懂。4月3日,日本京都大学召开了新闻发布会,宣布望月新一证明了它。包括Nature等在内的权威科学传媒组织,也这一重要进展进行了报道。望月新一没有出席昨天的发布会,他的另外两位同事说,当他知道自己的论文被接收,终于松了一口气。多年来他从未在公众场合露面。但也不是没有争议,因为当初接收论文的期刊——日本的PRIMS,主编正是望月新一本人。如果他的证明是正确的,那么将彻底改变数论。同时也正因为如此,才有了学界长达8年的争论。什么是abc猜想?abc猜想,最初由法国数学家约瑟夫·奥斯特莱和大卫·马瑟,在1985年提出。并且一经提出,abc猜想就成为数论领域的重要猜想之一。只是和哥德巴赫 ...

望月新一与他天书般的论文,展现了纯数学与我们的距离

导语:一位日本数学家声称已经解决了数学领域最重要的问题之一。但是,几乎无人能懂他的证明,无从判断对错。2012年8月30日的早晨,望月新一悄悄地在自己的网站上发布了4篇论文,总计长达500多页,密密麻麻地布满了各种符号。它们是作者孤独工作了十多年后的成果,可能会在学术界引起爆炸性的影响。在文中,望月新一声称解决了abc猜想——一个27年来在数论领域一直悬而未决的问题,令所有其他数学家都束手无策。如果望月新一的证明是正确的,它将是本世纪最令人震撼的数学成果之一,或将彻底改变整数方程的研究。David Parkins不过,望月新一本人并未对自己的证明大做文章。他任职于日本京都大学数理解析研究所(RIMS),是一位令人尊敬的数学家。他没有向全世界的同行宣布自己的研究成果,只是将论文发布在网上,等待世界去发现。第一个注意到他的论文的可能是玉川安骑男(Akio Tamagawa)——望月新一在RIMS的同事。和其他研究人员一样,玉川安骑男知道望月新一多年来一直在潜心钻研abc猜想,并且已近成功。当天,玉川安骑男通过电子邮件把这个消息发给了他的合作者之一、诺丁汉大学数论理论家Ivan Fesenk ...

分析学大师Elias M. Stein的分析系列教材

分析学大师Elias M. Stein(曾是陶哲轩的老师),写了四本分析学系列教材,统称为普林斯顿分析学讲座(Princeton Lectures in Analysis)。他们分别是:I Fourier Analysis:An Introduction II Complex Analysis III Real Analysis: Measure Theory, Integration, and Hilbert Spaces IV Functional Analysis: Introduction to Further Topics in Analysis当时集齐这四本书花了我不少时间,似乎这四本书知名度不一,我下的第一本是复分析教材Complex Analysis。现在我将这些好东西拿出来分享给有需要的人。PS:如果需要中译版的,目前只能找到《实分析》和《复分析》两本,链接:伊莱亚斯 M. 斯坦恩(Elias M. Stein)《复分析》与《实分析》教材更新:作者不再提供附件下载。