同调代数
同调代数是数学的一个分支,它在一个一般的代数设定下研究同调。这是一个相对年轻的学科,其起点可以追溯到19世纪末,主要由亨利·庞加莱和大卫·希尔伯特对组合拓扑和抽象代数的研究。
同调代数是研究同调函数及其所包含的复杂代数结构的学科;它的发展与范畴理论的出现密切相关。一个核心的概念是链复形,可以通过他们的同调和上同调来研究他们。
同调代数提供了提取这些复形中包含的信息的方法,并将其以环、模、拓扑空间和其他“有形”数学对象的同调不变量的形式呈现。谱序列是实现这一目标的有力工具。
同调代数在代数拓扑学中起着巨大的作用。它的影响逐渐扩大,目前包括交换代数、代数几何、代数数论、表示论、数学物理、算子代数、复分析和偏微分方程理论。K-理论是一门独立的学科,它借鉴了同调代数的方法,阿兰·康纳斯的非交换几何也是如此。
相关内容
Proof of the isomorphism $\textrm{Hom}_{A-mod}(\textrm{Hom}_{A-mod}(A,A),A)\cong A$ for any ring $A$
Let $A$ be a commutative ring with identity. Then we have an isomorphism $$A \rightarrow \textrm{Hom}_{A-mod}(A,A), a \mapsto (x \mapsto ax)$$, whose inverse is $$\textrm{Hom}_{A-mod}(A,A) \rightarrow A, \varphi \mapsto \varphi(1).$$Then applying this isomorphism, we get $$\textrm{Hom}_{A-mod}( \textrm{Hom}_{A-mod}(A,A) ,A) \cong \textrm{Hom}_{A-mod}(A,A) \cong A.$$
任意一个范畴之间的本质满射都是一个满态射吗?
我的提问:令$\cal{C},\cal{D}$为范畴(或者栈)。令$F:\cal{C}\rightarrow\cal{D}$是一个本质满射的函子,即在对象同构类上满射。然后$F$是小范畴(或者栈)范畴中的一个满态射吗?回答:不是。例如,任何一个对象的范畴之间的函子是本质满射的,但是如果$M_1, M_2$是两个非零幺半群,那么一个直和项的包含映射$M_1 \to M_1 \oplus M_2$,看成是两个单对象范畴间的一个函子,不是一个范畴的满态射。不过记住,“小范畴范畴中的满态射”由于多种原因,在任何特定应用中,都显然不是“正确”的概念。它抛弃了自然变换,所以你忽略了这样一个事实,即你其中在2-范畴里操作;并且在任何特定情况下,你可能需要各种“满态射”的概念。
学代数几何需要懂得什么别的数学分支?
原本我以为微分几何跟代数几何仅仅是数学两个有关联的分支,结果是我之前肤浅了。随着对代数几何深入的学习了解,我发现代数几何跟微分几何也有很深的联系。因此我完全可以说微分流形的理论是深入学习代数几何的necessity,或许你懂抽象代数、交换代数,甚至同调代数,但是若你不懂一些manifold的理论,你完全没有机会去学习étale cohomology、Hodge theory等代数几何更深层次的理论。当然想要学习代数几何最高深、最先进的部分,仅仅懂abstract algebra、homological algebra、manifold是完全不够的。以我自己为例,我的方向是算术几何,这意味着你还需要懂elliptic curve、modular forms、$\ell$-adic representation、algebraic topology等更深层次的知识。还没完,你觉得你所学的东西就真的在研究的过程中用得上吗?在看书的过程中,你还得不停地看文献,就像定制一台机器一样定制自己所需要学习的知识,这样才能保证自己学到有用的东西,否则就是浪费时间,人的脑容量是有限的,用不上的东西时间长了就会忘记。很多人想做数学研究,结果却把大量的时间浪费在无谓的学习上,其实我更加提倡边做边学的做法,先找到个问题,然后尝试去做它,在做的过程中不断学习自己所需要的知识,这样效率是不是高很多呢。但说这么多都没用,很多人本身没有这么强烈的motivation,动机是前提,连最基本的动机都没有,谈再多的方法都没用。————————————————————本文原发布于2020年10月14日
数学学习记录:重回同调代数之深夜有感而发
学了几天的数学分析实在不想学了,因为太乏味了,反正自己很多都已经学过了,以后需要再补吧,又或者说一时心血来潮的时候再看。今天我终于重回同调代数,我现在还记得临近高考的那段时间里我一直在专攻同调代数,那也是我同调代数飞速进步的时期,因为之前我一直觉得同调代数好难,非常难啃,概念太过抽象。而现在很多以前觉得困难的东西,自己也开始觉得简单了,这就是积累的过程。对我来说,数学怎么学好,就是不断地阅读、阅读、再阅读,直到心中的疑云已然消散,所有的一切都显得如此简单,就像流水一样自然,因为数学本来就是自然的。虽然我现在学同调代数起来比以前轻松很多,但是仍有那么一些问题,我怎么想都想不明白,但是我并不感到害怕,因为这便是学数学的乐趣所在,当有个问题你思考了很久很久,几个小时、几天或者几周,甚至几个月、几年,然后某天突然间你有了灵感并解决了这个问题,这其中的快乐简直难以形容!其实我刚开始学研究生的时候,基础半斤八两,本科的东西都没学完,研究生的数学对我来说就像是天书一样。可是我不在意这些,我不在意我是否有天赋、是否有能力去学习这些东西,我只有一个目的即是揭开现代数学神秘的面纱。就这样,我从高一开始坚持到了现在,也终于如愿以偿见识到了最高深、最先进的数学。有时候我会想起丘成桐曾说过的话:没有天才,一切都只是长年累月积累的结果。我不喜欢“天才”这个词语,比起“天才”我更加喜欢用“天赋”这个词,而即便你身怀天赋也逃避不了通过不断的努力去积累来取得成果这个过程。人们对“天才”总是存在误解,像电影里面那种一夜之间或者一下子就解决悬而未决的大问题这种事情在现实中是不可能发生的,而那些所谓的“神童”,无论他多早就读完书毕业,不论他学习有多超前,也不如年长之时才做出永垂不朽的伟大创造。不知不觉又到了深夜,一天过得真是快啊!我喜欢深夜听着音乐,在默默地思考、回忆。有多少人小时候心怀梦想,长大后却被现实的残酷所磨灭,又有多少人在如今的快节奏生活下逐渐忘记自己的初心。或许在种种困难之下,仍能坚守初心也是一种天赋吧。又离题扯远了。。今天学同调代数我重新卡在了跟以前相同的同一个点上,原本以为以自己现在的实力这个proposition就是trivial的,结果想不出来。看了一下proof发现作者说这个命题not quite trivial。。然后我就一直卡着出不来了。现在一件是凌晨一点了,我不可能像某些学数学的人那般有精力学到凌晨三四点。其实这个同调代数很多东西都是过了差不多三年后我才真正想明白的,现在这个问题又不知道要过多久才能解决呢?我一向不喜欢寻求别人的帮助,我更加喜欢凭借自己的力量去解决问题,但我相信解决这个小问题应该用不了多久,因为现在的我早已今昔非比。PS:半夜打字,头脑已经不清醒了。。————————————————————————本文原于2020年8月29日 1:25发布于QQ空间